References

Aldous, David J. 1985. “Exchangeability and Related Topics.” In École d’Été de Probabilités de Saint-Flour XIII—1983, 1–198. Springer.
Amari, Shun-Ichi. 1998. “Natural Gradient Works Efficiently in Learning.” Neural Computation 10 (2): 251–76.
Andrieu, Christophe, Arnaud Doucet, and Roman Holenstein. 2010. “Particle Markov Chain Monte Carlo Methods.” Journal of the Royal Statistical Society: Series B (Statistical Methodology) 72 (3): 269–342. https://doi.org/10.1111/j.1467-9868.2009.00736.x.
Bauer, Matthias, Mark van der Wilk, and Carl Edward Rasmussen. 2016. “Understanding Probabilistic Sparse Gaussian Process Approximations.” In Advances in Neural Information Processing Systems 29, edited by D. D. Lee, M. Sugiyama, U. V. Luxburg, I. Guyon, and R. Garnett, 1533–41. Curran Associates, Inc. http://papers.nips.cc/paper/6477-understanding-probabilistic-sparse-gaussian-process-approximations.pdf.
Bernardo, José M, and Adrian FM Smith. 2009. Bayesian Theory. Vol. 405. John Wiley & Sons.
Betancourt, Michael. 2017. “A Conceptual Introduction to Hamiltonian Monte Carlo.” https://arxiv.org/abs/1701.02434.
Bishop, Christopher M. 2006. Pattern Recognition and Machine Learning. New York: Springer.
Blackwell, David, James B MacQueen, et al. 1973. “Ferguson Distributions via pólya Urn Schemes.” The Annals of Statistics 1 (2): 353–55.
Blei, David M, Alp Kucukelbir, and Jon D McAuliffe. 2017. “Variational Inference: A Review for Statisticians.” Journal of the American Statistical Association 112 (518): 859–77.
Blum, M. G. B., M. A. Nunes, D. Prangle, and S. A. Sisson. 2012. “A Comparative Review of Dimension Reduction Methods in Approximate Bayesian Computation.” https://arxiv.org/abs/1202.3819.
Blum, Michael GB. 2017. “Regression Approaches for Approximate Bayesian Computation.” https://arxiv.org/abs/1707.01254.
Cappé, Olivier, Eric Moulines, and Tobias Ryden. 2007. Inference in Hidden Markov Models. Springer-Verlag.
Chopin, Nicolas. 2004. “Central Limit Theorem for Sequential Monte Carlo and Its Application to Bayesian Inference.” Ann. Statist. 32: 2385–2411.
Cox, J. C., Jr. Ingersoll J. E., and S. A. Ross. 1985. “A Theory of the Term Structure of Interest Rates.” Econometrica. https://www.jstor.org/stable/1911242.
De Finetti, Bruno. 1931. “Sul Significato Soggettivo Della Probabilita.” Fundamenta Mathematicae 17 (1): 298–329.
Diaconis, Persi, and David Freedman. 1986. “On the Consistency of Bayes Estimates.” The Annals of Statistics, 1–26.
Doucet, Arnaud, Nando de Freitas, and Neil J Gordon. 2001. Sequential Monte Carlo Methods in Practice. Springer-Verlag.
Doucet, Arnaud, and Adam Johansen. 2012. “A Tutorial on Particle Filtering and Smoothing: Fifteen Years Later.” Oxford Handbook of Nonlinear Filtering 12 (3): 656–704.
Earl, David J., and Michael W. Deem. 2005. “Parallel Tempering: Theory, Applications, and New Perspectives.” Physical Chemistry Chemical Physics 7 (23): 3910. https://doi.org/10.1039/b509983h.
Eldredge, Nathaniel. 2016. “Analysis and Probability on Infinite-Dimensional Spaces.” arXiv Preprint arXiv:1607.03591.
Eraker, B. 2001. “MCMC Analysis of Diffusion Models with Application to Finance.” Journal of Business and Economic Statistics 19: 177–91.
Escobar, Michael D, and Mike West. 1995. “Bayesian Density Estimation and Inference Using Mixtures.” Journal of the American Statistical Association 90 (430): 577–88.
Fang, Y, M Lysy, and McLeish Don. 2020. “Common‐factor Stochastic Volatility Modelling with Observable Proxy.” The Canadian Journal of Statistics. https://onlinelibrary.wiley.com/doi/abs/10.1002/cjs.11536.
Fearnhead, Paul, and Dennis Prangle. 2012. “Constructing Summary Statistics for Approximate Bayesian Computation: Semi-Automatic Approximate Bayesian Computation.” Journal of the Royal Statistical Society: Series B (Statistical Methodology) 74 (3): 419–74. https://doi.org/10.1111/j.1467-9868.2011.01010.x.
Ferguson, Thomas S. 1973. “A Bayesian Analysis of Some Nonparametric Problems.” The Annals of Statistics, 209–30.
Foong, Andrew YK, Yingzhen Li, José Miguel Hernández-Lobato, and Richard E Turner. 2019. “’In-Between’uncertainty in Bayesian Neural Networks.” arXiv Preprint arXiv:1906.11537.
Fox, Dieter, Sebastian Thrun, Wolfram Burgard, and Frank Dellaert. 2001. “Particle Filters for Mobile Robot Localization.” In Sequential Monte Carlo Methods in Practice, edited by Arnaud Doucet, Nando de Freitas, and Neil Gordon, 401–28. New York, NY: Springer New York. https://doi.org/10.1007/978-1-4757-3437-9_19.
Gelman, Andrew, John B Carlin, Hal S Stern, David B Dunson, Aki Vehtari, and Donald B Rubin. 2013. Bayesian Data Analysis. CRC press. http://www.stat.columbia.edu/~gelman/book/.
Geman, Stuart, and Donald Geman. 1984. “Stochastic Relaxation, Gibbs Distributions, and the Bayesian Restoration of Images.” IEEE Transactions on Pattern Analysis and Machine Intelligence, no. 6: 721–41.
Genton, Mark G. 2001. “Classes of Kernels for Machine Learning: A Statistics Perspective.” Journal of Machine Learning Research 2: 299–312.
Gordon, Neil J, David J Salmond, and Adrian FM Smith. 1993. “Novel Approach to Nonlinear/Non-Gaussian Bayesian State Estimation.” IEE Proceedings F (Radar and Signal Processing) 140: 107–113(6).
Hewitt, Edwin, and Leonard J Savage. 1955. “Symmetric Measures on Cartesian Products.” Transactions of the American Mathematical Society 80 (2): 470–501.
Hoffman, Matthew D, David M Blei, Chong Wang, and John Paisley. 2013. “Stochastic Variational Inference.” The Journal of Machine Learning Research 14 (1): 1303–47.
Hoffman, Matthew D., and Andrew Gelman. 2011. “The No-u-Turn Sampler: Adaptively Setting Path Lengths in Hamiltonian Monte Carlo.” https://arxiv.org/abs/1111.4246.
King, Aaron A., Edward L. Ionides, Carles Martinez Bretó, Stephen P. Ellner, Matthew J. Ferrari, Bruce E. Kendall, Michael Lavine, et al. 2020. pomp: Statistical Inference for Partially Observed Markov Processes. https://kingaa.github.io/pomp/.
Kingma, Diederik P, and Max Welling. 2014. “Auto-Encoding Variational Bayes.” In International Conference on Learning Representations.
Kitagawa, Genshiro. 1987. “Non-Gaussian State—Space Modeling of Nonstationary Time Series.” Journal of the American Statistical Association 82 (400): 1032–41. https://doi.org/10.1080/01621459.1987.10478534.
Kulis, Brian, and Michael I Jordan. 2011. “Revisiting k-Means: New Algorithms via Bayesian Nonparametrics.” arXiv Preprint arXiv:1111.0352.
Lysy, M. 2012. “The Method of Batch Inference for Multivariate Diffusions.” PhD thesis, Harvard University. https://pqdtopen.proquest.com/doc/923819686.html?FMT=AI&pubnum=3495622.
Marius, Hofert, and Martin Machler. 2011. “Nested Archimedean Copulas Meet r: The Nacopula Package.” Journal of Statistical Software 39 (March). https://doi.org/10.18637/jss.v039.i09.
Martino, Sara, and Andrea Riebler. 2019. “Integrated Nested Laplace Approximations (Inla).” arXiv Preprint arXiv:1907.01248.
Neal, Radford M. 2000. “Markov Chain Sampling Methods for Dirichlet Process Mixture Models.” Journal of Computational and Graphical Statistics 9 (2): 249–65.
Neal, Radford M. 1994. “Sampling from Multimodal Distributions Using Tempered Transitions.” Statistics and Computing 6: 353–66. https://doi.org/10.1007/BF00143556.
———. 1997. “Monte Carlo Implementation of Gaussian Process Models for Bayesian Regression and Classification.” Technical Report No.9702, Department of Statistics, University of Toronto. https://www.cs.toronto.edu/~radford/ftp/mc-gp.pdf.
———. 2001. “Annealed Importance Sampling.” Statistics and Computing 11 (2): 125–39. https://doi.org/10.1023/A:1008923215028.
———. 2012. “MCMC Using Hamiltonian Dynamics.” https://arxiv.org/abs/1206.1901.
Qian, D., B. Wang, X. Qing, T. Zhang, Y. Zhang, X. Wang, and M. Nakamura. 2017. “Drowsiness Detection by Bayesian-Copula Discriminant Classifier Based on EEG Signals During Daytime Short Nap.” IEEE Transactions on Biomedical Engineering 64 (4): 743–54.
Quinonero-Candela, Joaquin, and Carl Edward Rasmussen. 2005. “A Unifying View of Sparse Approximate Gaussian Process Regression.” Journal of Machine Learning Research 6: 1939–59. http://www.jmlr.org/papers/volume6/quinonero-candela05a/quinonero-candela05a.pdf.
Rad, Hossein, Rand Kwong Yew Low, and Robert Faff. 2016. “The Profitability of Pairs Trading Strategies: Distance, Cointegration and Copula Methods.” Quantitative Finance 16 (10): 1541–58. https://doi.org/10.1080/14697688.2016.1164337.
Ranjan, Pritam, Ronald D. Haynes, and Richard Karsten. 2011. “A Computationally Stable Approach to Gaussian Process Interpolation of Deterministic Computer Simulation Data.” Technometrics 53: 366–78.
Rasmussen, Carl Edward. 2000. “The Infinite Gaussian Mixture Model.” In Advances in Neural Information Processing Systems, 554–60.
Rasmussen, Carl Edward, and Christopher K. I. Williams. 2006. Gaussian Processes for Machine Learning. The MIT Press. http://www.gaussianprocess.org/gpml/.
Rezende, Danilo Jimenez, Shakir Mohamed, and Daan Wierstra. 2014. “Stochastic Backpropagation and Approximate Inference in Deep Generative Models.” In International Conference on Machine Learning, 1278–86.
Ritter, Hippolyt, Aleksandar Botev, and David Barber. 2018. “A Scalable Laplace Approximation for Neural Networks.” In 6th International Conference on Learning Representations, ICLR 2018-Conference Track Proceedings. Vol. 6. International Conference on Representation Learning.
Robbins, Herbert, and Sutton Monro. 1951. “A Stochastic Approximation Method.” The Annals of Mathematical Statistics, 400–407.
Sethuraman, Jayaram. 1994. “A Constructive Definition of Dirichlet Priors.” Statistica Sinica, 639–50.
Silverman, Bernhard W. 1985. “Some Aspects of the Spline Smoothing Approach to Non-Parametric Regression Curve Fitting.” Journal of the Royal Statistical Society. Series B (Methodological) 47 (1): 1–52.
Smola, Alex J., and Peter L. Bartlett. 2001. “Sparse Greedy Gaussian Process Regression.” In Advances in Neural Information Processing Systems 13, edited by T. K. Leen, T. G. Dietterich, and V. Tresp, 619–25. MIT Press. http://papers.nips.cc/paper/1880-sparse-greedy-gaussian-process-regression.pdf.
Snelson, Edward, and Zoubin Ghahramani. 2006. “Sparse Gaussian Processes Using Pseudo-Inputs.” In Advances in Neural Information Processing Systems 18, 1257–64. MIT Press. http://papers.nips.cc/paper/2857-sparse-gaussian-processes-using-pseudo-inputs.pdf.
Wu, Shaomin. 2014. “Construction of Asymmetric Copulas and Its Application in Two-Dimensional Reliability Modelling.” European Journal of Operational Research 238 (2): 476–85. https://doi.org/https://doi.org/10.1016/j.ejor.2014.03.016.