Fit the fSD model.
fsd_fit(
Xt,
dt,
drift = c("linear", "none", "quadratic"),
vcov = TRUE,
ad_only = TRUE
)
Matrix of trajectory positions, where each row is an observation and each column is a measurement coordinate. The trajectory is assumed to be sampled at a constant frequency.
Interobservation time \(\Delta t\) = 1/fps (positive scalar).
Character string specifying one of the preset drift types "linear", "none", or "quadratic". Custom drift functions are not supported through this simplified interface. See csi_model for details.
Logical; if TRUE
, also estimate the variance matrix.
Whether to return estimates of (alpha, log(D)
) only, or the entire parameter vector omega
in the computational basis.
A vector of estimated parameters on the transformed scale. If vcov == TRUE
, a list with components:
A vector of estimated parameters on transformed scale.
A matrix of estimated covariance of parameters on transformed scale.
If ad_only == TRUE
, instead of the transformed scale parameters, returns an estimate (and possibly the estimated convariance) of (alpha, D)
.
To avoid issues with the boundary of the parameter support (on the regular scale), the optimization is conducted with a penalty term
Savin, T. and Doyle, P.S. "Static and dynamic errors in particle tracking microrheology." Biophysical Journal 88.1 (2005): 623-638.
fsd_model, the class definition for the fSD model.
# simulate data from the fsd model
alpha <- .8
tau <- .1
sigma2 <- .01
dt <- 1/60
N <- 1800
ndim <- 2
Xt <- csi_sim(drift = matrix(0, N-1, ndim),
acf = fsd_acf(alpha, tau, sigma2, dt, N-1),
Sigma = diag(ndim),
X0 = rep(0, ndim))
# Fit the fsd model
fsd_fit(Xt, dt = dt, drift = "linear")
#> $coef
#> alpha logD
#> 0.6956956 -0.8939788
#>
#> $vcov
#> alpha logD
#> alpha 0.002117774 0.003945870
#> logD 0.003945870 0.009581818
#>