TMB::MakeADFun() object for the exponential Ornstein-Uhlenbeck stochastic volatility model.R/eou_MakeADFun.R
eou_MakeADFun.RdConstruct a TMB::MakeADFun() object for the exponential Ornstein-Uhlenbeck stochastic volatility model.
eou_MakeADFun(
Xt,
dt,
log_Vt,
alpha,
log_gamma,
mu,
log_sigma,
logit_rho,
par_list,
...
)Vector of nobs asset log prices.
Interobservation time.
Optional vector of nobs volatilities on the log standard deviation scale. See 'Details'.
Optional asset growth rate parameter. See 'Details'.
Optional log-volatility mean reversion parameter on the log scale. See 'Details'.
Optional log-volatility mean parameter. See 'Details'.
Optional log-volatility diffusion parameter on the log scale. See 'Details'.
Optional correlation parameter between asset and volatility innovations, on the logit scale. See 'Details'.
Optional list with named elements consisting of a subset of log_Vt, alpha, log_gamma, mu, log_sigma, and logit_rho. Values in par_list will supercede those of the corresponding individual argument if both are provided.
Additional arguments to TMB::MakeADFun().
The result of a call to TMB::MakeADFun().
The exponential Ornstein-Uhlenbeck (eOU) stochastic volatility model for a single asset is given by the stochastic differential equation (SDE)
dlog_Vt = - gamma (log_Vt - mu) dt + sigma dB_Vt
dXt = (alpha - .5 Vt^2) dt + Vt (rho dB_Vt + sqrt(1-rho^2) dB_Zt),where B_Vt and B_Zt are independent Brownian motions.
eou_MakeADFun() implements the Euler approximation to this SDE...
The optional inputs log_Vt, alpha, ..., logit_rho can be set to initialize optimization routines. The default values are alpha = 0, ..., logit_rho = 0, and log_Vt as the log of windowed standard deviation estimates returned by sv_init().
eou_MakeADFun is a wrapper to TMB::MakeADFun(). This function may be called on the underlying C++ template provided by svcommon via