Calculate local likelihood kernel weights.
KernWeight(x, x0, band, kernel = KernEpa, band_type = "constant")
Vector of observed covariate values.
Scalar covariate value at which local likelihood estimation is performed.
Kernel bandwidth parameter (positive scalar). See Details.
Kernel function to use. Should accept a numeric vector parameter and return a non-negative numeric vector of the same length. See KernFun()
.
A character string specifying the type of bandwidth: either "constant" or "variable". See Details.
A vector of nonnegative kernel weights of the same length as x
.
For the constant bandwidth of size band = h
, the weights are calculated as
where kernel
is the kernel function. For bandwidth type "variable", a fixed fraction band
of observations is used, i.e,
x <- sort(runif(20))
x0 <- runif(1, min = min(x), max= max(x))
KernWeight(x, x0, band=0.3, kernel = KernEpa, band_type = "constant")
#> [1] 0.0000000 0.0000000 0.5231907 0.9669443 1.0612962 1.2444669 2.4575241
#> [8] 2.4989902 2.3342279 1.3003913 1.1008385 0.8895873 0.7857324 0.0000000
#> [15] 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
KernWeight(x, x0, band=0.3, kernel = KernEpa, band_type = "variable")
#> [1] 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.41957430
#> [7] 3.19822658 3.29320975 2.91580212 0.54767584 0.09057621 0.00000000
#> [13] 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000
#> [19] 0.00000000 0.00000000