MCMC: An Intermediate Example

STAT 946: Advanced Bayesian Computing

The Noncentral-t Distribution

Definition: Let $z \sim \mathcal{N}(\mu, \sigma^2)$ \quad \amalg \quad $x \sim \chi^2_{(\nu)}.$ Then $y = \frac{z}{\sqrt{2}}$ $\sqrt{x/\nu}$ $+ \eta$

has a Noncentral Student-t (NCT) distribution, denoted $y \sim t_{(\nu)}(\mu, \sigma, \eta)$.

The Noncentral-t Distribution

Definition: Let $z \sim \mathcal{N}(\mu, \sigma^2)$ \quad \amalg \quad $x \sim \chi^2_{(\nu)}.$ Then

$$
y = \frac{z}{\sqrt{x/\nu}} + \eta \sim t_{(\nu)}(\mu, \sigma, \eta).
$$

Modeling: Allows very general specification of mean, variance, skewness and kurtosis.

y

Parameter Inference

▶ Model:

$$
y_i \stackrel{\text{iid}}{\sim} t_{(\nu)}(\mu, \sigma, \eta) \qquad \Longleftrightarrow \qquad y_i = \frac{z_i}{\sqrt{x_i/\nu}} + \eta, \qquad \begin{array}{c} z_i \stackrel{\text{iid}}{\sim} \mathcal{N}(\mu, \sigma^2) \\ x_i \stackrel{\text{ iid}}{\sim} \chi^2_{(\nu)} \end{array}
$$

- ▶ Observed Data: $y_{obs} = y = (y_1, \ldots, y_n)$.
- \blacktriangleright Missing Data: $y_{\text{miss}} = x = (x_1, \ldots, x_n)$.
- **Complete Data:** $y_{comp} = (y, x)$, with

$$
x_i \stackrel{\text{iid}}{\sim} \chi^2_{(\nu)}
$$

$$
y_i \mid x_i \stackrel{\text{iid}}{\sim} \mathcal{N}(\eta + \gamma / x_i^{1/2}, \tau^2 / x_i),
$$

where $\gamma = \mu \nu^{1/2}$ and $\tau = \sigma \nu^{1/2}$.

Parameter Inference

\n- Model:
$$
y_i \stackrel{\text{iid}}{\sim} t_{(\nu)}(\mu, \sigma, \eta)
$$
\n- Observed Data: $y_{\text{obs}} = y = (y_1, \ldots, y_n)$
\n- Complete Data: $y_{\text{comp}} = (\mathbf{y}, \mathbf{x})$, with
\n

$$
x_i \stackrel{\text{iid}}{\sim} \chi_{(\nu)}^2
$$

\n
$$
y_i | x_i \stackrel{\text{ind}}{\sim} \mathcal{N}(\eta + \gamma / x_i^{1/2}, \tau^2 / x_i), \qquad \tau = \sigma \nu^{1/2}.
$$

• **Inference:** Let
$$
\theta = (\eta, \gamma, \tau^2, \nu)
$$
.

EM Algorithm: This would require taking expectations of x, $x^{1/2}$, and $\log x$ with respect to

$$
p(x \mid y, \theta) \propto \exp\left\{-\frac{1}{2}\frac{(y - \eta - \gamma x^{-1/2})^2}{\tau^2/x} + \frac{1}{2}\log x + (\frac{\nu - 2}{2})\log x - \frac{x}{2}\right\}
$$

$$
\propto \exp\left\{Ax + Bx^{1/2} + C\log x\right\},\
$$

a nonstandard distribution (don't even know its normalizing constant).

Parameter Inference

▶ Model: $y_i \stackrel{iid}{\sim} t_{(\nu)}(\mu, \sigma, \eta)$ \triangleright Observed Data: $y_{obs} = y = (y_1, \ldots, y_n)$. **• Complete Data:** $y_{\text{conn}} = (y, x)$, with $x_i \stackrel{\text{iid}}{\sim} \chi^2_{(\nu)},$ $y_i | x_i \stackrel{\text{ind}}{\sim} \mathcal{N}(\eta + \gamma / x_i^{1/2})$ $\int_{i}^{1/2}, \tau^2/x_i$). **• Inference:** Let $\boldsymbol{\theta} = (\eta, \gamma, \tau^2, \nu)$. ▶ EM Algorithm: Requires expectations wrt $p(x \mid y, \theta) \propto \exp \left\{ Ax + Bx^{1/2} + C \log x \right\}.$

- ▶ Bayesian Data Augmentation:
	- 1. Implement an MCMC algorithm on the augmented posterior distribution
	- 2. If $(\mathbf{x}^{(1)}, \theta^{(1)}), \dots, \mathcal{C}_{\mathbf{x}}^{(k)} \mathcal{N}, \theta_{\theta}^{(k)} \mathcal{N}) \stackrel{\propto}{\scriptstyle\sim} \theta^{(y, \mathbf{x} \textrm{ } \textrm{ } \theta) \times \pi(\theta)}_{\scriptscriptstyle\text{IS}}.$ Since $\pi(\theta)$ for $p(\mathbf{x}, \theta \textrm{ } \vert \textrm{ } \mathbf{y})$, then the stationary distribution of $\boldsymbol{\theta}^{(1)}, \ldots, \boldsymbol{\theta}^{(M)}$ is $p(\theta | y) = \int p(x, \theta | y) dx.$

(Works for exactly the same reason that the histogram of each random variable in any MCMC converges to its marginal distribution.)

• Complete Data Likelihood: Don't cancel out anything involving θ or x:

$$
\ell(\boldsymbol{\theta} \mid \mathbf{x}, \mathbf{y}) = \log p(\mathbf{y}, \mathbf{x} \mid \boldsymbol{\theta})
$$

= $-\frac{1}{2} \sum_{i=1}^{n} \left[\frac{(y_i - \eta - \gamma x_i^{-1/2})^2}{\tau^2 / x_i} - (\nu - 1) \log x_i + x_i \right]$
- $n \left[\frac{\tau^2 + \nu}{2} + \log \Gamma(\nu/2) \right].$

- ▶ MCMC Algorithm: A block Metropolis-within-Gibbs sampler with the following conditional updates:
	- **Update for** (η, γ, τ) : Canceling everything that doesn't depend on $\beta = (n, \gamma)$ and τ , conditional likelihood $\ell(\beta, \tau | \nu, x, y)$ is that of a regression-like model

$$
y_i \stackrel{\text{ind}}{\sim} \mathcal{N}(\boldsymbol{u}_i' \boldsymbol{\beta}, \tau^2 / x_i), \qquad \boldsymbol{u}_i = (1, 1 / x_i^{1/2}).
$$

▶ Complete Data Likelihood:

$$
\ell(\theta \mid \mathbf{x}, \mathbf{y}) = -\frac{1}{2} \sum_{i=1}^{n} \left[\frac{(y_i - \eta - \gamma x_i^{-1/2})^2}{\tau^2 / x_i} - (\nu - 1) \log x_i + x_i \right] - n \left[\frac{\tau^2 + \nu}{2} + \log \Gamma \left(\frac{\nu}{2} \right) \right]
$$

▶ MCMC Algorithm: A block Metropolis-within-Gibbs sampler with:

• Update for (η, γ, τ) : Canceling everything that doesn't depend on $\beta = (\eta, \gamma)$ and τ , conditional likelihood $\ell(\beta, \tau | \nu, x, y)$ is that of a regression-like model

$$
y_i \stackrel{\text{ind}}{\sim} \mathcal{N}(\boldsymbol{u}_i^{\prime} \boldsymbol{\beta}, \tau^2 / x_i), \qquad \boldsymbol{u}_i = (1, 1 / x_i^{1/2}).
$$

 $y_i \stackrel{\text{def}}{\sim} \mathcal{N}(\mathbf{u}_i'\beta, \tau^2/x_i),$ $\mathbf{u}_i = (1, 1/x_i'^2)^2$.

► Conjugate Prior: Multivariate Normal Inverse-Gamma (mNIX) distribution

 $(\beta, \tau^2) \sim \text{mNIX}(\lambda, \Sigma, \alpha, \gamma) \qquad \Longleftrightarrow$ $\tau^2 \sim$ Inv-Gamma (α, γ) $\boldsymbol{\beta} \mid \tau^2 \sim \mathcal{N}(\boldsymbol{\lambda}, \tau^2 \cdot \boldsymbol{\Sigma}).$

 \implies Exact Gibbs update for $p(\boldsymbol{\beta}, \tau^2 \mid \nu, \mathbf{x}, \mathbf{y}).$

▶ Complete Data Likelihood:

$$
\ell(\theta \mid \mathbf{x}, \mathbf{y}) = -\frac{1}{2} \sum_{i=1}^{n} \left[\frac{(y_i - \eta - \gamma x_i^{-1/2})^2}{\tau^2 / x_i} - (\nu - 1) \log x_i + x_i \right] - n \left[\frac{\tau^2 + \nu}{2} + \log \Gamma \left(\frac{\nu}{2} \right) \right]
$$

▶ MCMC Algorithm: A block Metropolis-within-Gibbs sampler with:

 \blacktriangleright Update for ν : Conditional likelihood is

 $\ell(\nu \mid \eta, \gamma, \tau, x, y) = -n \log \Gamma(\frac{1}{2}\nu) - \frac{1}{2}\nu \times (n \log(2) - \sum_{i=1}^{n} \log x_i).$ Proposal Distribution: Conditional likelihood only depends on $\alpha_i \overset{\text{iid}}{\sim} \chi^2_{(\nu)}$ which is an Exponential Family $\implies \ell(\nu \mid \eta, \gamma, \tau, \mathsf{x}, \mathsf{y})$ is convex. Could do Newton-Raphson to obtain a mode-quadrature normal approximation, but easier to use a random walk proposal. ▶ Prior Distribution: Use $log \nu \sim \mathcal{N}(0, 2^2)$. Basically uninformative,

since Pr(.005 < ν < 170) ≈ 99% (recall that $t_{(\nu=1)}$ ~ Cauchy and $t_{(\nu>30)} \approx \mathcal{N}(0,1)$). Think of this prior as regularizing inference (i.e., prevents ν from floating off to 0 or ∞).

▶ Complete Data Likelihood:

$$
\ell(\theta \mid \mathbf{x}, \mathbf{y}) = -\frac{1}{2} \sum_{i=1}^{n} \left[\frac{(y_i - \eta - \gamma x_i^{-1/2})^2}{\tau^2 / x_i} - (\nu - 1) \log x_i + x_i \right] - n \left[\frac{\tau^2 + \nu}{2} + \log \Gamma \left(\frac{\nu}{2} \right) \right]
$$

▶ MCMC Algorithm: A block Metropolis-within-Gibbs sampler with:

 \blacktriangleright Update for x: Conditional posterior is

$$
p(\mathbf{x} \mid \mathbf{y}, \boldsymbol{\theta}) \propto \prod_{i=1}^n \exp \left\{ A_i x_i + B_i x_i^{1/2} + C \log x_i \right\}.
$$

- ▶ Proposal Distribution:
	- \triangleright Note that the x_i are conditionally independent given everything else \implies exact Gibbs sampler produces IID samples.
	- ▶ Could do MWG, but this requires *n* tuning parameters (one for each x_i).
	- Note that mode of $Ax + Bx^{1/2} + C \log x$ has an analytic solution

 \implies tuning-free MIID-within-Gibbs mode-quadrature proprosal.

Proposal Distribution for $p(x | y, \theta)$

MCMC Code Checking

- \blacktriangleright Much more difficult than checking that $\hat{\theta} =$ arg max $_{\theta}$ $\ell(\theta \mid \mathbf{y})$, since
	- \blacktriangleright MCMC is a random algorithm
	- **▶** Don't know much about $p(\theta | y)$ that's why we're doing MCMC in the first place!
- ▶ Recommendation: check code meticulously at every step. Whenever I skip a step, 99% of time there will be an error and then I don't know if it's in the last step or the one(s) I skipped. So I end up checking every step anyway, except now it takes longer.

Code Checking Strategies

- 1. Compare every simplified conditional likelihood $\ell(\theta_i \mid \theta_{-i}, y)$ to the unsimplified likelihood log $p(y | \theta)$. Difference between the two for any value of θ_i should be equal to a constant (possibly depending on y and θ_{-i}).
- 2. Compare every simplified posterior $p(\theta_i | \theta_{-i}, y)$ to the unsimplified posterior $\mathcal{L}(\theta | y) \times \pi(\theta)$.

Same as for loglikelihoods, but now checking Jacobians, i.e., if prior is $\pi(\theta)$ but sampling is done on $\psi = g(\theta)$, then $\pi(\psi) = \pi(g^{-1}(\psi)) \left| \frac{\partial}{\partial \psi} g^{-1}(\psi) \right|$.

- 3. Compare sampling from $p(\theta_i | \theta_{-i}, y)$ to analytic conditional. To get analytic conditional, recall that $p(\theta_j | \theta_{-j}, y) \propto \mathcal{L}(\theta | y) \times \pi(\theta)$, to normalize evaluate 1-d integral numerically.
- 4. Compare sampling from $p(\theta | y)$ for given MCMC to sample from same posterior with a different MCMC.

Both samplers should give same results.

Notation: $\theta = (\mu, \sigma, \eta, \nu)$, $\varphi = (\eta, \gamma = \mu\nu^{1/2}, \tau^2 = \sigma^2 \nu, \nu) = (\beta, \tau^2, \nu)$.

1. Simplified vs unsimplified likelihoods: $\ell(\eta,\gamma,\tau^2\mid \nu,\mathbf{x},\mathbf{y}),\ \ell(\nu\mid \eta,\gamma,\tau^2,\mathbf{x},\mathbf{y}),\ \log p(\mathbf{x}\mid \boldsymbol{\varphi},\mathbf{y})$ can each be checked against

$$
p(\mathbf{y}, \mathbf{x} \mid \varphi) = \underbrace{p(\mathbf{y} \mid \mathbf{x}, \eta, \gamma, \tau^2)}_{\stackrel{\text{ind}}{\sim} \mathcal{N}(\eta + \gamma \mathbf{x}^{-1/2}, \tau^2 \mathbf{x}^{-1})} \times \underbrace{p(\mathbf{x} \mid \nu)}_{\stackrel{\text{iid}}{\sim} \chi^2_{(\nu)}}
$$

Notation: $\theta = (\mu, \sigma, \eta, \nu)$, $\varphi = (\eta, \gamma = \mu\nu^{1/2}, \tau^2 = \sigma^2 \nu, \nu) = (\beta, \tau^2, \nu)$.

2. Conditional updates:

- \blacktriangleright $p(\nu \mid \ldots)$ and $p(x_i \mid \ldots)$ compare to analytic 1D posterior $\propto p(\mathbf{v}, \mathbf{x} \mid \varphi) \pi(\varphi).$
- ▶ Prior: $log(\nu) \sim \mathcal{N}(\mu_{\nu}, \sigma_{\nu}^2)$ $\beta, \tau^2 \mid \nu \sim mNIX(\alpha, \gamma, \lambda, \Sigma)$ As σ_{ν} , $\Sigma \rightarrow \infty$ and $\alpha, \gamma \rightarrow 0$ this becomes $\pi(\varphi) \propto 1/\tau^2$
- ▶ To check $p(\beta, \tau^2 | \nu, x, y) = \text{mNIX}(\hat{\alpha}, \hat{\gamma}, \hat{\lambda}, \hat{\Sigma})$, note that for any $a \in \mathbb{R}^2$,

$$
\tau^2 \mid \nu, \mathbf{x}, \mathbf{y} \sim \mathsf{Inv-Gamma}(\hat{\alpha}, \hat{\gamma}), \qquad \frac{\mathbf{a}' \boldsymbol{\beta} - \mathbf{a}' \hat{\boldsymbol{\lambda}}}{\sqrt{\hat{\gamma}/\hat{\alpha} \cdot \mathbf{a}' \hat{\boldsymbol{\Sigma}} \mathbf{a}}} \mid \nu, \mathbf{x}, \mathbf{y} \sim t_{(2\hat{\alpha})}
$$

Note that the second result integrates out τ^2 .

Notation: $\theta = (\mu, \sigma, \eta, \nu)$, $\varphi = (\eta, \gamma = \mu\nu^{1/2}, \tau^2 = \sigma^2 \nu, \nu) = (\beta, \tau^2, \nu)$.

3. Unconditional Updates:

- ▶ Compare to an MIID sampler with mode-quadrature normal proposals for $p(\theta | \mathbf{v}) = p(\mathbf{v} | \theta) \pi(\theta)$.
- \triangleright $p(\mathbf{y} | \theta)$ available through R's built-in function dt with ncp parameter.
- $\blacktriangleright \pi(\theta)$ obtained from $\pi(\varphi)$ through Jacobian. That is, if $f_{\varphi}(\varphi)$ is PDF of prior on φ , then PDF of prior on θ is $f_{\theta}(\theta) = f_{\varphi}(\varphi) \times |d\varphi/d\theta|$, where

$$
\frac{d\varphi}{d\theta} = \begin{bmatrix} 0 & \nu^{1/2} & 0 & 0 \\ 0 & 0 & 2\sigma\nu & 0 \\ 1 & 0 & 0 & 0 \\ 0 & \frac{1}{2}\mu\nu^{-1/2} & \sigma^2 & 1 \end{bmatrix} \qquad \Longrightarrow \qquad \left| \frac{d\varphi}{d\theta} \right| = 2\sigma\nu^{3/2}.
$$

Notation: $\theta = (\mu, \sigma, \eta, \nu)$, $\varphi = (\eta, \gamma = \mu\nu^{1/2}, \tau^2 = \sigma^2 \nu, \nu) = (\beta, \tau^2, \nu)$.

4. Compare to different MCMC on same posterior:

- ▶ Since this is a 4-parameter problem, probably easiest to compare to MIID sampling with normal mode-quadrature proposals.
- ▶ For more complicated problems, perhaps easier to use a general-purpose MCMC, which will be slow but easy to program.
- ▶ Stan: The state-of-the-art in general-purpose MCMC.
	- \triangleright Stan is a programming language very similar to R to which you input an arbitrary $\log p(\theta | \mathbf{y})$.
	- \blacktriangleright Implements and compiles in C++ a very effective MCMC algorithm called Hybrid Monte Carlo (HMC), but usually referred to as Hamiltonian Monte Carlo.