
MCMC: An Intermediate Example

STAT 946: Advanced Bayesian Computing



The Noncentral-t Distribution

Definition: Let z ∼ N (µ, σ2) ⨿ x ∼ χ2
(ν). Then

y =
z√
x/ν

+ η

has a Noncentral Student-t (NCT) distribution, denoted y ∼ t(ν)(µ, σ, η).



The Noncentral-t Distribution

Definition: Let z ∼ N (µ, σ2) ⨿ x ∼ χ2
(ν). Then

y =
z√
x/ν

+ η ∼ t(ν)(µ, σ, η).

Modeling: Allows very general specification of mean, variance, skewness
and kurtosis.
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Parameter Inference

▶ Model:

yi
iid∼ t(ν)(µ, σ, η) ⇐⇒ yi =

zi√
xi/ν

+η,
zi

iid∼ N (µ, σ2)

xi
iid∼ χ2

(ν)

▶ Observed Data: yobs = y = (y1, . . . , yn).

▶ Missing Data: ymiss = x = (x1, . . . , xn).

▶ Complete Data: ycomp = (y , x), with

xi
iid∼ χ2

(ν)

yi | xi
ind∼ N (η + γ/x

1/2
i , τ 2/xi ),

where γ = µν1/2 and τ = σν1/2.



Parameter Inference

▶ Model: yi
iid∼ t(ν)(µ, σ, η)

▶ Observed Data: yobs = y = (y1, . . . , yn).

▶ Complete Data: ycomp = (y , x), with

xi
iid∼ χ2

(ν)

yi | xi
ind∼ N (η + γ/x

1/2
i , τ 2/xi ),

γ = µν1/2,

τ = σν1/2.

▶ Inference: Let θ = (η, γ, τ 2, ν).
▶ EM Algorithm: This would require taking expectations of x , x1/2,

and log x with respect to

p(x | y ,θ) ∝ exp

{
−1

2

(y − η − γx−1/2)2

τ 2/x
+

1

2
log x + ( ν−2

2
) log x − x

2

}
∝ exp

{
Ax + Bx1/2 + C log x

}
,

a nonstandard distribution (don’t even know its normalizing constant).



Parameter Inference

▶ Model: yi
iid∼ t(ν)(µ, σ, η)

▶ Observed Data: yobs = y = (y1, . . . , yn).

▶ Complete Data: ycomp = (y , x), with

xi
iid∼ χ2

(ν),

yi | xi
ind∼ N (η + γ/x

1/2
i , τ 2/xi ).

▶ Inference: Let θ = (η, γ, τ 2, ν).
▶ EM Algorithm: Requires expectations wrt

p(x | y ,θ) ∝ exp
{
Ax + Bx1/2 + C log x

}
.

▶ Bayesian Data Augmentation:
1. Implement an MCMC algorithm on the augmented posterior

distribution
p(x ,θ | y) ∝ p(y , x | θ)× π(θ).

2. If (x (1),θ(1)), . . . , (x (M),θ(M)) is an MCMC sample from p(x ,θ | y),
then the stationary distribution of θ(1), . . . ,θ(M) is
p(θ | y) =

∫
p(x ,θ | y)dx .

(Works for exactly the same reason that the histogram of each random variable

in any MCMC converges to its marginal distribution.)



Bayesian Data Augmentation

▶ Complete Data Likelihood: Don’t cancel out anything involving θ
or x :

ℓ(θ | x , y) = log p(y , x | θ)

= −1

2

n∑
i=1

[
(yi − η − γx

−1/2
i )2

τ 2/xi
− (ν − 1) log xi + xi

]

− n

[
τ 2 + ν

2
+ log Γ(ν/2)

]
.

▶ MCMC Algorithm: A block Metropolis-within-Gibbs sampler with
the following conditional updates:
▶ Update for (η, γ, τ): Canceling everything that doesn’t depend on

β = (η, γ) and τ , conditional likelihood ℓ(β, τ | ν, x , y) is that of a
regression-like model

yi
ind∼ N (u′

iβ, τ
2/xi ), ui = (1, 1/x

1/2
i ).



Bayesian Data Augmentation

▶ Complete Data Likelihood:

ℓ(θ | x , y) = −
1

2

n∑
i=1

[
(yi − η − γx

−1/2
i )2

τ2/xi
− (ν − 1) log xi + xi

]
−n

[
τ2 + ν

2
+ log Γ

(ν

2

)]
.

▶ MCMC Algorithm: A block Metropolis-within-Gibbs sampler with:
▶ Update for (η, γ, τ): Canceling everything that doesn’t depend on

β = (η, γ) and τ , conditional likelihood ℓ(β, τ | ν, x , y) is that of a
regression-like model

yi
ind∼ N (u′

iβ, τ
2/xi ), ui = (1, 1/x

1/2
i ).

▶ Conjugate Prior: Multivariate Normal Inverse-Gamma (mNIX)
distribution

(β, τ 2) ∼ mNIX(λ,Σ, α, γ) ⇐⇒
τ 2 ∼ Inv-Gamma(α, γ)

β | τ 2 ∼ N (λ, τ 2 ·Σ).

=⇒ Exact Gibbs update for p(β, τ 2 | ν, x , y).



Bayesian Data Augmentation

▶ Complete Data Likelihood:

ℓ(θ | x , y) = −
1

2

n∑
i=1

[
(yi − η − γx

−1/2
i )2

τ2/xi
− (ν − 1) log xi + xi

]
−n

[
τ2 + ν

2
+ log Γ

(ν

2

)]
.

▶ MCMC Algorithm: A block Metropolis-within-Gibbs sampler with:
▶ Update for ν: Conditional likelihood is

ℓ(ν | η, γ, τ, x , y) = −n log Γ( 1
2
ν)− 1

2
ν ×

(
n log(2)−

∑n
i=1 log xi

)
.

▶ Proposal Distribution: Conditional likelihood only depends on

xi
iid∼ χ2

(ν) which is an Exponential Family =⇒ ℓ(ν | η, γ, τ, x , y) is
convex. Could do Newton-Raphson to obtain a mode-quadrature
normal approximation, but easier to use a random walk proposal.

▶ Prior Distribution: Use log ν ∼ N (0, 22). Basically uninformative,
since Pr(.005 < ν < 170) ≈ 99% (recall that t(ν=1) ∼ Cauchy and

t(ν≥30) ≈ N (0, 1)). Think of this prior as regularizing inference (i.e.,

prevents ν from floating off to 0 or ∞).



Bayesian Data Augmentation

▶ Complete Data Likelihood:

ℓ(θ | x , y) = −
1

2

n∑
i=1

[
(yi − η − γx

−1/2
i )2

τ2/xi
− (ν − 1) log xi + xi

]
−n

[
τ2 + ν

2
+ log Γ

(ν

2

)]
.

▶ MCMC Algorithm: A block Metropolis-within-Gibbs sampler with:
▶ Update for x : Conditional posterior is

p(x | y ,θ) ∝
n∏

i=1

exp
{
Aixi + Bix

1/2
i + C log xi

}
.

▶ Proposal Distribution:
▶ Note that the xi are conditionally independent given everything else

=⇒ exact Gibbs sampler produces IID samples.
▶ Could do MWG, but this requires n tuning parameters (one for each xi ).
▶ Note that mode of Ax + Bx1/2 + C log x has an analytic solution

=⇒ tuning-free MIID-within-Gibbs mode-quadrature proprosal.



Proposal Distribution for p(x | y ,θ)
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MCMC Code Checking

▶ Much more difficult than checking that θ̂ = argmaxθ ℓ(θ | y), since
▶ MCMC is a random algorithm
▶ Don’t know much about p(θ | y) – that’s why we’re doing MCMC in

the first place!

▶ Recommendation: check code meticulously at every step.
Whenever I skip a step, 99% of time there will be an error and then
I don’t know if it’s in the last step or the one(s) I skipped. So I end
up checking every step anyway, except now it takes longer.



Code Checking Strategies

1. Compare every simplified conditional likelihood ℓ(θj | θ−j , y) to the
unsimplified likelihood log p(y | θ).
Difference between the two for any value of θj should be equal to a constant (possibly

depending on y and θ−j ).

2. Compare every simplified posterior p(θj | θ−j , y) to the unsimplified
posterior L(θ | y)× π(θ).

Same as for loglikelihoods, but now checking Jacobians, i.e., if prior is π(θ) but sampling is

done on ψ = g(θ), then π(ψ) = π
(
g−1(ψ)

) ∣∣∣ ∂
∂ψ g−1(ψ)

∣∣∣.
3. Compare sampling from p(θj | θ−j , y) to analytic conditional.

To get analytic conditional, recall that p(θj | θ−j , y) ∝ L(θ | y) × π(θ), to normalize

evaluate 1-d integral numerically.

4. Compare sampling from p(θ | y) for given MCMC to sample from same
posterior with a different MCMC.

Both samplers should give same results.



Code Checking for Noncentral-t

Notation: θ = (µ, σ, η, ν), φ = (η, γ = µν1/2, τ 2 = σ2ν, ν) = (β, τ 2, ν).

1. Simplified vs unsimplified likelihoods:
ℓ(η, γ, τ 2 | ν, x , y), ℓ(ν | η, γ, τ 2, x , y), log p(x | φ, y) can each be
checked against

p(y , x | φ) = p(y | x , η, γ, τ 2)︸ ︷︷ ︸
ind∼N (η+γx−1/2,τ 2x−1)

× p(x | ν)︸ ︷︷ ︸
iid∼χ2

(ν)



Code Checking for Noncentral-t

Notation: θ = (µ, σ, η, ν), φ = (η, γ = µν1/2, τ 2 = σ2ν, ν) = (β, τ 2, ν).

2. Conditional updates:

▶ p(ν | . . .) and p(xi | . . .) compare to analytic 1D posterior
∝ p(y , x | φ)π(φ).

▶ Prior: log(ν) ∼ N (µν , σ
2
ν) β, τ 2 | ν ∼ mNIX(α, γ,λ,Σ)

As σν ,Σ → ∞ and α, γ → 0 this becomes π(φ) ∝ 1/τ 2

▶ To check p(β, τ 2 | ν, x , y) = mNIX(α̂, γ̂, λ̂, Σ̂), note that for any
a ∈ R2,

τ 2 | ν, x , y ∼ Inv-Gamma(α̂, ,̂γ),
a′β − a′λ̂√
γ̂/α̂ · a′Σ̂a

| ν, x , y ∼ t(2α̂)

Note that the second result integrates out τ 2.



Code Checking for Noncentral-t

Notation: θ = (µ, σ, η, ν), φ = (η, γ = µν1/2, τ 2 = σ2ν, ν) = (β, τ 2, ν).

3. Unconditional Updates:

▶ Compare to an MIID sampler with mode-quadrature normal
proposals for p(θ | y) = p(y | θ)π(θ).

▶ p(y | θ) available through R’s built-in function dt with ncp

parameter.

▶ π(θ) obtained from π(φ) through Jacobian. That is, if fφ(φ) is
PDF of prior on φ, then PDF of prior on θ is
fθ(θ) = fφ(φ)× |dφ/dθ|, where

dφ

dθ
=


0 ν1/2 0 0
0 0 2σν 0
1 0 0 0
0 1

2µν
−1/2 σ2 1

 =⇒
∣∣∣∣dφdθ

∣∣∣∣ = 2σν3/2.



Code Checking for Noncentral-t

Notation: θ = (µ, σ, η, ν), φ = (η, γ = µν1/2, τ 2 = σ2ν, ν) = (β, τ 2, ν).

4. Compare to different MCMC on same posterior:

▶ Since this is a 4-parameter problem, probably easiest to compare to
MIID sampling with normal mode-quadrature proposals.

▶ For more complicated problems, perhaps easier to use a
general-purpose MCMC, which will be slow but easy to program.

▶ Stan: The state-of-the-art in general-purpose MCMC.
▶ Stan is a programming language very similar to R to which you input

an arbitrary log p(θ | y).
▶ Implements and compiles in C++ a very effective MCMC algorithm

called Hybrid Monte Carlo (HMC), but usually referred to as
Hamiltonian Monte Carlo.


