MCMC: An Intermediate Example

STAT 946: Advanced Bayesian Computing



The Noncentral-t Distribution

Definition: Let z ~ NV'(4,0%) I x~ x{,. Then

Y= Vx/v

has a Noncentral Student-t (NCT) distribution, denoted y ~ t(,y(u, o, 7).
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The Noncentral-t Distribution
Definition: Let z ~ AV(4,0%) II  x~x{,. Then

4
y = ——=+n~ ty(po,mn).
x/v

Modeling: Allows very general specification of mean, variance, skewness
and kurtosis.

Non-Central t withn =0, 0=1
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Parameter Inference

> Model:
iid
id Z; Zj ~ N(u7 02)
Yi ~ t) (1, 0,m) = Vi = ——=+n, id
Vi /v X~ Xf,,)

> Observed Data: yobs =y = (y1,..-,¥n)-
» Missing Data: ymiss = x = (x1,...,Xp)-
» Complete Data: yomp = (¥, X), with
iid
Xi ~ X(zy)
ind 1/2
yi | xi N +7/x72, 72/ x),

where v = /2 and 1 = ov/2.



Parameter Inference

> Model: y; % t,) (1, 0,7)
> Observed Data: yobs =y = (y1,. .-, ¥n)-
» Complete Data: yomp = (y,X), with

X~ X{) v =,
i 1/2
yi | % % N+ /52,72 %), 7=ov'/2

» Inference: Let 6 = (1,~,72,v).
> EM Algorithm: This would require taking expectations of x, x/2,
and log x with respect to

Ly—n—y 2P 1 . x
p(x\y,O)ocexp{—ET+§logx+( >2) log x — 2

X exp {Ax +Bx? 4 Clogx} ,

a nonstandard distribution (don't even know its normalizing constant).



Parameter Inference

> Model: y; tw) (ks 0,m)
> Observed Data: yobs =y = (y1,-.-,¥n)-

» Complete Data: yomp = (¥, X), with
iid 2
Xi ™~ X(v)»
ind 1/2 2
il xi ~ N(n+v/x"7,7°/x).
> Inference: Let O = (n,~,72,v).
> EM Algorithm: Requires expectations wrt
p(x |y, 8) < exp { Ax + Bxl/2 4 C log x}.
> Bayesian Data Augmentation:
1. Implement an MCMC algorithm on the augmented posterior

distribution
0 k)
2. 1F (x(U o)y, .| (l))(%”), é(%)ocspa%/ M&I\/PC sampae from p(x,0 | y),
then the stationary distribution of (1) ... (M) s

p(0|y) = [ p(x,0 | y)dx.
(Works for exactly the same reason that the histogram of each random variable
in any MCMC converges to its marginal distribution.)



Bayesian Data Augmentation

> Complete Data Likelihood: Don't cancel out anything involving 6
or x:

(0| x,y) =logp(y,x|0)

1 [ (= = %)
:_5’_2_; =y — (v —1)logx; + x;
2
. [T 2” + log r(y/z)] .

» MCMC Algorithm: A block Metropolis-within-Gibbs sampler with
the following conditional updates:

» Update for (7,7, 7): Canceling everything that doesn't depend on
B = (n,7) and 7, conditional likelihood 4(3,T | v, x,y) is that of a
regression-like model

vi CNB, 7 /x),  wi=(1,1/x7).



Bayesian Data Augmentation

» Complete Data Likelihood:

z": (i —n—x )2

T2 /x;

+ log (z\

1
(4o xy) =3 2

2

2
—(v—1)logx; + x;| —n |:T tv

i=1
» MCMC Algorithm: A block Metropolis-within-Gibbs sampler with:

» Update for (7,7, 7): Canceling everything that doesn't depend on
B = (n,7) and 7, conditional likelihood 4(3,T | v, x,y) is that of a
regression-like model

yi CNB T /x),  wi=(1,1/5").
» Conjugate Prior: Multivariate Normal Inverse-Gamma (mNIX)
distribution
7° ~ Inv-Gamma(a, v)

) ~ mNIX(\, =

— Exact Gibbs update for p(3, 72 | v, x, y).



Bayesian Data Augmentation

» Complete Data Likelihood:

n —1/2y2
1 P —n — YX;
g(g|x7y):,,z w,(y,l)bngﬂq

2/
2= 72/ X;

» MCMC Algorithm: A block Metropolis-within-Gibbs sampler with:
»> Update for v: Conditional likelihood is

|:T2+V

v |n,v,7,x,y)=—nlogl(3v) — v x (nlog(2) = X7, log x;).
> Proposal Distribution: Conditional likelihood only depends on
xi K X%u) which is an Exponential Family = (v | n,v, 7, x,y) is
convex. Could do Newton-Raphson to obtain a mode-quadrature
normal approximation, but easier to use a random walk proposal.
> Prior Distribution: Use logv ~ A(0,2%). Basically uninformative,
since Pr(.005 < v < 170) ~ 99% (recall that t(,_;) ~ Cauchy and
t(,>30) = N(0,1)). Think of this prior as regularizing inference (i.e.,
prevents v from floating off to 0 or o).



Bayesian Data Augmentation

» Complete Data Likelihood:

1 [ == 22
f(9|x,y)—_22|:7_2/x’_(V—1)|ogX,‘+X,-

24 V)
_ | r(,
n{ > + log >y

» MCMC Algorithm: A block Metropolis-within-Gibbs sampler with:
»> Update for x: Conditional posterior is

i=1

n
1/2
p(x|y,0) Hexp {A,‘X,‘ + B,-x,./ + Clogx,-} .
i=1
> Proposal Distribution:
> Note that the x; are conditionally independent given everything else
— exact Gibbs sampler produces IID samples.
» Could do MWG, but this requires n tuning parameters (one for each x;).
> Note that mode of Ax + Bx'/2 + Clog x has an analytic solution
= tuning-free MIID-within-Gibbs mode-quadrature proprosal.



Proposal Distribution for p(x | y, 8)

Density

w=27,0=1n=11,v=78 n=-4,0-18,n=63,v=7.1

w=-51,0=67n=-12,v=




MCMC Code Checking

» Much more difficult than checking that = arg max, £(6 | y), since
» MCMC is a random algorithm
» Don't know much about p(0 | y) — that's why we're doing MCMC in
the first place!

» Recommendation: check code meticulously at every step.
Whenever | skip a step, 99% of time there will be an error and then
| don't know if it's in the last step or the one(s) | skipped. So | end
up checking every step anyway, except now it takes longer.




Code Checking Strategies

1. Compare every simplified conditional likelihood £(0; | 8_;,y) to the
unsimplified likelihood log p(y | €).

Difference between the two for any value of 6; should be equal to a constant (possibly
depending on y and 6_;).

2. Compare every simplified posterior p(6; | 6_;j,y) to the unsimplified
posterior L(6 | y) x 7(0).
Same as for loglikelihoods, but now checking Jacobians, i.e., if prior is w(0) but sampling is
done on = g(6), then (1) = m(g~1(¥)) | 28 ()],

3. Compare sampling from p(6; | 6_;,y) to analytic conditional.
To get analytic conditional, recall that p(6; | 6_j,y) o< L(6 | y) x 7(8), to normalize
evaluate 1-d integral numerically.

4. Compare sampling from p(@ | y) for given MCMC to sample from same
posterior with a different MCMC.

Both samplers should give same results.



Code Checking for Noncentral-t

2 _

Notation: 8 = (u,0,1,v), ¢ = (1,7 = w'/?,7% = o%v,v) = (B,7%,v).
1. Simplified vs unsimplified likelihoods:

Un,y, 7 [ vsx, ), Lv [ 1,7, 72, %, ), log p(x | ¢, y) can each be
checked against

ply,x| @)= ply|x,n,7,7%) xp(x|v)
—_— ——

M (yx—1/2,72x—1) ii“d‘X%u)



Code Checking for Noncentral-t

Notation: 0 = (u,0,7,v), ¢ = (1,7 = w'/?, 72 = o%v,v) = (8,72, v).

2. Conditional updates:
> p(v]...)and p(x; | ...) compare to analytic 1D posterior
o ply, x | @)m(ep).
» Prior: log(v) ~ N (pt, 02) B,7% | v ~ mNIX(a,7, A\, X)
As 0,,% — oo and a,y — 0 this becomes 7(¢) o 1/72

» To check p(B3,72 | v, x,y) = mNIX(&, %, X, f]) note that for any
ac R?

7% | v, x,y ~ Inv-Gamma(&, }y),

Note that the second result integrates out 72.



Code Checking for Noncentral-t

Notation: 0 = (u,0,7,v), ¢ = (1,7 = w2, 72 = 6%v,v) = (8,72, v).

3. Unconditional Updates:

» Compare to an MIID sampler with mode-quadrature normal
proposals for p(0 | y) = p(y | 8)7(6).

> p(y | 6) available through R’s built-in function dt with ncp
parameter.

» 7(6) obtained from 7(¢) through Jacobian. That is, if f,(¢) is
PDF of prior on ¢, then PDF of prior on 8 is
fo(0) = f,(p) x |dp/dB|, where

0 2 0 0

dey 0 0 20v 0

E = 1 0 O 0 = ’ 20'V
0o L1252 1

Plaid



Code Checking for Noncentral-t

2=0%,v)=(B8,7%,v).

4. Compare to different MCMC on same posterior:

Notation: 0 = (u,0,7,v), @ = (1,7 = /2,1

» Since this is a 4-parameter problem, probably easiest to compare to
MIID sampling with normal mode-quadrature proposals.

» For more complicated problems, perhaps easier to use a
general-purpose MCMC, which will be slow but easy to program.
» Stan: The state-of-the-art in general-purpose MCMC.
» Stan is a programming language very similar to R to which you input
an arbitrary log p(0 | y).
» Implements and compiles in C++ a very effective MCMC algorithm
called Hybrid Monte Carlo (HMC), but usually referred to as
Hamiltonian Monte Carlo.



