
Basics of Markov Chain Monte Carlo

STAT 946: Advanced Bayesian Computing



Motivation

▶ Bayesian Inference:
▶ Posterior Distribution: p(θ | y) ∝ L(θ | y)× π(θ), with

θ = (θ1, . . . , θd).
▶ Quantity of Interest: τ = g(θ).
▶ Point/Interval Estimate:

τ̂ = E [τ | y ] =
∫

g(τ)p(θ | y)dθ

CI95(τ) =
(
F−1
τ |y (2.5% | y),F−1

τ |y (97.5% | y)
)

▶ Deterministic Calculation: Multidimensional integral and
Inverse-CDF are typically very difficult for d > 2. (any grid method

scales terribly with d)



Markov Chain Monte Carlo (MCMC)

Problem: Let

τ = g(x), x = (x1, . . . , xd) ∼ p(x).

Compute E [τ ] and F−1
τ (α).

▶ Deterministic calculation: Typically very difficult for d > 2.

▶ Monte Carlo: If we can sample x (1), . . . , x (M) iid∼ p(x), then

▶ Point Estimate: τ̄ =
1

M

M∑
m=1

g(x (m)) → τ .

▶ Interval Estimate: Let τ (m) = g(x (m)) and τ (1:M) = (τ (1), . . . , τ (M)).
Then

q̂τ (α) = quantile(x (1:M), prob = α) → F−1
τ (α).
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Markov Chain Monte Carlo (MCMC)

▶ Problem: Let τ = g(x), x ∼ p(x). Compute E [τ ].

▶ Monte Carlo: If we can sample x (1), . . . , x (M) iid∼ p(x), then

τ̄ =
1

M

M∑
m=1

τ (m) → E [τ ].

Problem: Drawing x (m) iid∼ p(x) typically very difficult for d > 2.

▶ Solution: Much easier to design a Markov chain

x (m) ∼ T(x | x (m−1))

for which the stationary distribution is p(x).
Still have τ̄ → E [τ ], but usually var(τ̄iid) < var(τ̄mcmc).
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Markov Chain Monte Carlo

▶ Problem: Let τ = g(x), x ∼ p(x). Compute E [τ ].

▶ MCMC:
▶ Sample from a Markov chain x (m) ∼ T(x | x (m−1)) for which the

stationary distribution is p(x).
▶ Calculate τ̄ = 1

M

∑M
m=1 g(x

(m)) → E [τ ]

▶ Transition Density: How to pick T(x | x ′)?
Two fundamental concepts:

1. REDUCE: only sample parts of x at a time (Gibbs sampler)
2. APPROX: don’t try to sample perfectly, as many approximate

sampling schemes can be perfectly corrected (Metropolis-Hastings
algorithm)
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Gibbs Sampler

▶ Problem: Sample x ∼ p(x)
▶ Suppose we know how to sample from p(xi | x−i ) for every

1 ≤ i ≤ d .

Input: x (0) ▷ Starting value

for m = 1, . . . ,M do
x̃ ← x (m)

for i = 1, . . . , d do
x̃i ∼ p(xi | x̃−i ) ▷ Update each rv conditioned on all others

end for
x (m+1) ← x̃

end for

Output: x (1), . . . , x (M)



Example: Bivariate Normal

▶ Model: [
x
y

]
∼ N2

([
µx

µy

]
,

[
σ2
x σxσyρ

σxσyρ σ2
y

])
.

▶ Conditional Distributions:

x | y ∼ N
(
µx + ρ

σx

σy
× (y − µy ), (1− ρ2)σ2

x

)
y | x ∼ N

(
µy + ρ

σy

σx
× (x − µx), (1− ρ2)σ2

y

)
.



Example: Bivariate Normal

Model:

[
x
y
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∼ N2
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0
0
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[
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Example: Bivariate Normal
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Gibbs Sampler (Continued)

▶ Summary: Cycle through conditional updates xi ∼ p(x−i ). Can do
these in any order, even random.

▶ Limitations:
▶ Convergence is slow when cor(xi , x−i ) → 1.

▶ Convergence is slow for poorly-chosen initial value x (0)

▶ Must be able to sample for each conditional p(xi | x−i ).
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Metropolis-Hastings Algorithm

▶ Gibbs sampler requires you to be able to draw from each p(xi | x−i ).

▶ What if p(xi | x−i ) is not easy to draw from?

▶ MH algorithm requires only a transition density T(x | x ′) for which:

1. You can draw x ∼ T(x | x ′)

2. You have a closed-form PDF (or PMF) for T(x | x ′) (i.e., including

normalizing constant)
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Metropolis-Hastings Algorithm

Input: x (0), T(x | x ′) ▷ Starting value, transition density

for m = 1, . . . ,M do
xcurr ← x (m)

xprop ∼ T(x | xcurr) ▷ Proposal

α← min

{
1,

p(xprop)/T(xprop | xcurr)
p(xcurr)/T(xcurr | xprop)

}
▷ Acceptance probability

U ∼ Unif(0, 1)
if U < α then

x (m+1) ← xprop ▷ Keep proposal with probability α

else
x (m+1) ← xcurr ▷ Reject proposal with probability 1− α

end if
end for

Output: x (1), . . . , x (M)



Metropolis-Hastings Algorithm

▶ Algorithm Summary:

1. Draw xprop ∼ T(x | xcurr = x (m))

2. Let α = min

{
1,

p(xprop)/T(xprop | xcurr)
p(xcurr)/T(xcurr | xprop)

}
3. Set x (m+1) to xprop with probability α, to xcurr with probability 1− α

▶ Requires only a transition density T(x | x ′) for which:

1. You can draw x ∼ T(x | x ′)
2. You have a closed-form PDF (or PMF) for T(x | x ′)

▶ Only need r(x) = p(x)/Z , where Z is unknown
(since p(xprop)/p(xcurr) = r(xprop)/r(xcurr)).
Critical for Bayesian inference, in which case only know
p(θ | y)∝L(θ | y)π(θ)
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Common Transition Densities

1. Random Walk Metropolis: xprop ∼ N
(
xcurr, diag(σ2

tune)
)
.

Let f (x) denote the PDF of N (0, diag(σ2
tune). Then

T(xprop | xcurr) = f (xprop − xcurr) = f (xcurr − xprop) = T(xcurr | xprop).

Thus, the transition density is symmetric =⇒
α = min{1, p(xprop)/p(xcurr)}.



Common Transition Densities

1. Random Walk Metropolis: xprop ∼ N
(
xcurr, diag(σ2

tune)
)
.

2. Metropolis-Within-Gibbs:
xj,prop ∼ N (xj,curr, σ

2
j,tune), j = 1, . . . , d .

Like a Gibbs sampler, but each update is RWM if p(xj | x−j) can’t
be drawn from directly.



Common Transition Densities

1. Random Walk Metropolis: xprop ∼ N
(
xcurr, diag(σ2

tune)
)
.

2. Metropolis-Within-Gibbs:
xj,prop ∼ N (xj,curr, σ

2
j,tune), j = 1, . . . , d .

3. Metropolized IID: xprop
iid∼ q(x).

Typically this is “mode-quadrature” proposal

N (x̂ ,−[ ∂2

∂x2 log p(x̂)]−1), where x̂ = argmaxx p(x).



Metropolis-Hastings Algorithm

▶ Algorithm Summary:

1. Draw xprop ∼ T(x | xcurr = x (m))
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{
1,
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}
3. Set x (m+1) to xprop with probability α, to xcurr with probability 1− α

▶ Question: Why does it work?

▶ Theorem: Suppose that x (m) is drawn from p(x), and x (m+1) is an
MH update, i.e.,

x (m) ∼ p(x)

x (m+1) | x (m) ∼ MH{T, x (m)}
= α · T(x | x (m)) + (1− α) · δ{x = x (m)}.

Then the marginal distribution of x (m+1) ∼ p(x). In other words,
the MH algorithm generates a Markov chain with stationary
distribution p(x).
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p(xb)/T(xb|xa) < 1.

1. Joint distribution of a then b: (proposal automatically accepted)

p(x (m) = xa, x (m+1) = xb) = p(xa) · T(xb | xa).



Metropolis-Hastings Algorithm

▶ Algorithm Summary:

1. Draw xprop ∼ T(x | xcurr = x (m))
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p(xb)/T(xb|xa) < 1.

1. Joint distribution of a then b:
p(x (m) = xa, x (m+1) = xb) = p(xa) · T(xb | xa).

2. Joint distribution of b then a (proposal accepted with probability α)

p(x (m) = xb, x (m+1) = xa) = p(xb) · T(xa | xb) ·
p(xa)/T(xa | xb)
p(xb)/T(xb | xa)

= p(xa) · T(xb | xa).



Metropolis-Hastings Algorithm

▶ Algorithm Summary:

1. Draw xprop ∼ T(x | xcurr = x (m))

2. Let α = min

{
1,

p(xprop)/T(xprop | xcurr)
p(xcurr)/T(xcurr | xprop)

}
3. Set x (m+1) to xprop with probability α, to xcurr with probability 1− α
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=⇒ x (m+1) ∼ p(x).

▶ Proof: Consider xa and xb such that α = p(xa)/T(xa|xb)
p(xb)/T(xb|xa) < 1.

1. Joint distribution of a then b:
p(x (m) = xa, x (m+1) = xb) = p(xa) · T(xb | xa).

2. Joint distribution of b then a
p(x (m) = xb, x (m+1) = xa) = p(xa) · T(xb | xa).

=⇒ p(x (m) = xa, x (m+1) = xb) = p(x (m) = xb, x (m+1) = xa).

Since joint distribution is symmetric, each marginal must be identical

=⇒ p(x (m+1)) = p(x (m)) = p(x).



Example: Weibull Distribution

Definition: If X ∼ Expo(1), then

Y = λX γ ∼Weibull(γ, λ).

The PDF of Y is

f (y) =
γ

λ

(y
λ

)γ−1

e−(y/λ)γ , y > 0.



Weibull Distribution

▶ Model: Y ∼Weibull(γ, λ) ⇐⇒ Y = λX γ , X ∼ Expo(1).

▶ Utility: Survival Analysis.
▶ Hazard function: ≈ probability of failing in next instant:

h(y) = lim
∆y→0

Pr(Y < y +∆y | Y > y)

∆y
=

f (y)

1− F (y)▶ h(y) characterizes distribution, just like f (y) or F (y)

▶ Weibull Hazard: h(y) = ( γ
λγ ) · yγ−1

▶ γ = 1 =⇒ h(y) = const =⇒ Y ∼ λ · Expo(1)
memoriless property (chance of failing constant through time)

▶ γ > 1 =⇒ h(y) increasing
Ex: elderly patients more and more likely to die soon as they get
older

▶ γ < 1 =⇒ h(y) decreasing
Ex: infants more and more likely to survive longer as they get older
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Weibull Distribution

▶ Model: Y ∼Weibull(γ, λ) ⇐⇒ Y = λX γ , X ∼ Expo(1).

▶ Hazard Function: h(y) ∝ yγ−1
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Weibull Distribution

▶ Model: Y ∼Weibull(γ, λ) ⇐⇒ Y = λX γ , X ∼ Expo(1).

▶ Likelihood: y = (y1, . . . , yn)
iid∼Weibull(γ, λ)

ℓ(γ, λ | y) = n
[
log(γ)− γ log(λ)

]
+

n∑
i=1

γ log(yi )− λ−γ
n∑

i=1

yγ
i .

Not an Exponential Family (because of yγ
i ).
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Weibull Distribution

▶ Model: Y ∼Weibull(γ, λ) ⇐⇒ Y = λX γ , X ∼ Expo(1).

▶ Likelihood:
ℓ(γ, λ | y) = n

[
log(γ)− γ log(λ)

]
+
∑n

i=1

[
γ log(yi )− λ−γyγ

i

]
.

▶ Simulated Data: γ = 1.19, λ = 2.61, n = 100
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Weibull Distribution

▶ Model: Y ∼Weibull(γ, λ) ⇐⇒ Y = λX γ , X ∼ Expo(1).

▶ Likelihood:
ℓ(γ, λ | y) = n

[
log(γ)− γ log(λ)

]
+
∑n

i=1

[
γ log(yi )− λ−γyγ

i

]
.

▶ Prior: π(γ, λ) ∝ 1 (hopefully won’t make much difference)

▶ Posterior: For 2-d problem can compute p(γ, λ | y) on a grid
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Weibull Distribution

▶ Model: Y ∼Weibull(γ, λ) ⇐⇒ Y = λX γ , X ∼ Expo(1).

▶ Likelihood:
ℓ(γ, λ | y) = n

[
log(γ)− γ log(λ)

]
+
∑n

i=1

[
γ log(yi )− λ−γyγ

i

]
.

▶ Prior: π(γ, λ) ∝ 1

▶ Posterior: For 2-d problem can compute p(γ, λ | y) on a grid,
OR MCMC on θ = (γ, λ):

1. Random-Walk Metropolis: θprop ∼ N
(
θcurr, diag(σ

2
RW)

)
.

2. Metropolis-Within-Gibbs: θj,prop ∼ N (θj,curr, σ
2
j,RW), j = 1, 2.

3. Metropolized IID:

θprop
iid∼ N (θ̂, Σ̂), θ̂ = argmaxθ log p(θ | y)

Σ̂ = −
[

∂2

∂θ2 log p(θ̂ | y)
]−1



Random-Walk Metropolis (RWM)

▶ Transition Density: θprop ∼ N
(
θcurr, diag(σ

2
RW)

)
▶ Tuning Parameters: coordinate-wise “jump size” σj,RW.

▶ Question: How to pick σRW?



Random-Walk Metropolis (RWM)

▶ Transition Density: θprop ∼ N
(
θcurr, diag(σ

2
RW)

)
▶ Tuning Parameters: coordinate-wise “jump size” σRW.

“Optimal” acceptance rate: ≈ 25%.
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MCMC Diagnostics

1. Trace Plot: Time series of MCMC output θ(1), . . . ,θ(M)

2. Autocorrelation Plot: Ideally would have θ(m) iid∼ p(θ | y), but
instead draws are correlated.
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MCMC Diagnostics

1. Trace Plot: Time series of MCMC output θ(1), . . . ,θ(M)

2. Autocorrelation Plot: Ideally would have θ(m) iid∼ p(θ | y), but
instead draws are correlated

3. Effective Sample Size: For given τ = g(θ), M draws from MCMC
are roughly equivalent to ESS(τ) iid draws, where

ESS(τ) =
M

1 + 2×
∑∞

t=1 γt
, γt = cor(τ (m), τ (m+t)).

That is, if τ̂MCMC and τ̂IID are sample means of M draws from
MCMC and IID sampler, then

var(τ̂IID)

var(τ̂MCMC)
≈ 1

1 + 2×
∑∞

t=1 γt
.



MCMC Diagnostics

1. Trace Plot: Time series of MCMC output θ(1), . . . ,θ(M)

2. Autocorrelation Plot: Ideally would have θ(m) iid∼ p(θ | y), but
instead draws are correlated

3. Effective Sample Size: For given τ = g(θ), M draws from MCMC
are roughly equivalent to ESS(τ) iid draws, where

ESS(τ) =
M

1 + 2×
∑∞

t=1 γt
, γt = cor(τ (m), τ (m+t)).

Weibull example for M = 10, 000:

Accept. Rate
3% 95% 29%

γ 286 137 1518
λ 235 125 460



Metropolis-Within-Gibbs (MWG)

▶ Transition Density: θprop,j ∼ N (θcurr,j , σ
2
RW,j)

Contrast with RWM, which proposes all of θ at once.

▶ Tuning Parameters: “Optimal” coordinate-wise acceptance rate
≈ 45%.
Contrast with RMW, for which optimal acceptance rate ≈ 25%.



Metropolis-Within-Gibbs (MWG)

▶ Transition Density: θprop,j ∼ N (θcurr,j , σ
2
RW,j)

▶ Tuning Parameters: “Optimal” coordinate-wise acceptance rate
≈ 45%.
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Metropolized IID Sampler (MIID)

▶ Transition Density:

θprop
iid∼ N

(
θ̂,−

[
∂2

∂θ2
log p(θ̂ | y)

]−1
)
, θ̂ = argmax

θ
log p(θ | y).

▶ Optimal acceptance rate:



Metropolized IID Sampler (MIID)

▶ Transition Density:

θprop
iid∼ N

(
θ̂,−

[
∂2

∂θ2
log p(θ̂ | y)

]−1
)
, θ̂ = argmax

θ
log p(θ | y).

▶ Optimal acceptance rate: 100%!
▶ MIID has no tuning parameters: no need to tune (good), but also

stuck with whatever acceptance rate the proposals have (bad).

▶ Since proposals are IID, all of p(θprop | y) and q(θprop) can be
precomputed before entering the MCMC =⇒ can parallelize these
calculations, and write a generic and lightweight MIID sampler
directly in R (see miid_sampler in mcmc-functions.R on LEARN).

▶ Works extremely well when number of parameters is d ∼ 10− 20.
But for large d acceptance rate typically goes to 0.

▶ I usually resort to MWG if MIID acceptance rate is < 10− 25%, or if
mode-finding algorithm is unreliable, etc.



Metropolized IID Sampler (MIID)

▶ Transition Density:

θprop
iid∼ N

(
θ̂,−

[
∂2

∂θ2
log p(θ̂ | y)

]−1
)
, θ̂ = argmax

θ
log p(θ | y).

▶ Optimal acceptance rate:



Metropolized IID Sampler (MIID)

γ

λ

0.8 1.0 1.2 1.4 1.6

1.
5

2.
0

2.
5

3.
0

3.
5

4.
0

True Posterior
Mode-Quad Approx



Metropolized IID Sampler (MIID)

Effective sample size for M = 10, 000:

Algorithm (acc. rate)
RMW (25%) MWG (45%) MIID (90%)

γ 1518 2043 8892
λ 460 1967 4195



Summary

▶ RWM vs MWG:
▶ Transition Density:

θ(RWM)
prop ∼ N

(
θcurr, diag(σ

2
RWM)

)
, θ

(MWG)
prop,j ∼ N (θcurr,j , σ

2
MWG,j ).

▶ Almost always use MWG instead of RWM.
▶ MWG almost always converges faster.
▶ Price to pay is more log-posterior evaluations.

▶ Optimal Acceptance Rates: αRWM ≈ 25% and αMWG ≈ 45%.

▶ MIID:
▶ Transition Density: θprop

iid∼ q(θ) (typically a normal with

mode-quadrature matching log p(θ | y)).
▶ Optimal Acceptance Rate: αMIID as high as possible.
▶ Efficiency: Calculation of q(θprop) and p(θprop | y) can be easily

vectorized (unlike RWM and MWG).
▶ Can be combined with MWG, but recalculating mode-quadrature

within each Gibbs step can be very expensive.



Marginal MCMC

▶ Model: Y ∼Weibull(γ, λ) ⇐⇒ Y = λX γ , X ∼ Expo(1).

▶ Loglikelihood:

ℓ(γ, λ | y) = n
[
log(γ)− γ log(λ)

]
+

n∑
i=1

[
γ log(yi )− λ−γyγ

i

]
= n

[
log(γ) + log(η)

]
+ γS − ηTγ ,

where η = λ−γ , S =
∑n

i=1 log(yi ), and Tγ =
∑n

i=1 y
γ
i .

▶ Conditionally Conjugate Prior: For fixed γ:
▶ Conditional Likelihood: ℓ(η | γ, y) = n log(η)− ηTγ .
▶ Conjugate Prior:

π(η | γ) ∼ Gamma(α, β)

⇐⇒ log π(η | γ) = (α− 1) log(η)− ηβ.
▶ Conditional Posterior:

η | γ, y ∼ Gamma(α̂, β̂γ), α̂ = α+ n

β̂γ = β + Tγ .



Marginal MCMC

▶ Model: Y ∼Weibull(γ, λ) ⇐⇒ Y = λX γ , X ∼ Expo(1).

▶ Loglikelihood: ℓ(γ, λ | y) = n
[
log(γ) + log(η)

]
+ γS − ηTγ ,

where η = λ−γ , S =
∑n

i=1 log(yi ), and Tγ =
∑n

i=1 y
γ
i .

▶ Conditionally Conjugate Prior: π(γ, η) such that
γ ∼ π(γ)

η | γ ∼ Gamma(α, β).

▶ Conditional Posterior:
η | γ, y ∼ Gamma(α̂, β̂γ), α̂ = α+ n

β̂γ = β + Tγ .▶ Marginal Posterior:

p(γ | y) = p(γ, η | y)
p(η | γ, y)

∝ L(γ, η | y)π(γ, η)
dgamma(η | α̂, β̂γ)

= exp
{
log Γ(α̂)− α̂ log(β̂γ) + n log(γ) + γS

}
× π(γ).

=⇒ can do 1-d MCMC to get γ(m) ∼ p(γ | y), followed by

η(m) ind∼ Gamma(α̂, β̂γ(m)).



Efficiency of Gibbs Sampling Schemes

▶ Theorem: Consider three Gibbs sampling schemes on p(x , y , z):

1. Single-Component Gibbs: x ⇋ y ⇋ z
2. Block Gibbs: x ⇋ (y , z)
3. Collapsed Gibbs: first x ⇋ y , then z ∼ p(z | x , y).

Then we have:
ESS(Scheme 1) ≤ ESS(Scheme 2) ≤ ESS(Scheme 3).

▶ Practical Considerations:
▶ Result only holds for exact Gibbs sampler, i.e., if all schemes above

use Metropolis-within-Gibbs, then usually
ESS(Scheme 1) ≥ ESS(Scheme 2), as the effectiveness of RW
multivariate proposals decreases exponentially with number of
dimensions.

▶ If all schemes are MWG, then Scheme 3 (if available) is always
better than the other two. However, if Scheme 1 is exact Gibbs and
Scheme 3 is MWG, then often ESS(Scheme 1) ≥ ESS(Scheme 3) if
number of parameters is large and few are being collapsed.
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Efficiency of Gibbs Sampling Schemes

▶ Theorem: Consider three Gibbs sampling schemes on p(x , y , z):

1. Single-Component Gibbs: x ⇋ y ⇋ z
2. Block Gibbs: x ⇋ (y , z)
3. Collapsed Gibbs: first x ⇋ y , then z ∼ p(z | x , y).

Then we have:
ESS(Scheme 1) ≤ ESS(Scheme 2) ≤ ESS(Scheme 3).

▶ Practical Considerations:
▶ Result only holds for exact Gibbs sampler, i.e., if all schemes above

use Metropolis-within-Gibbs, then usually
ESS(Scheme 1) ≥ ESS(Scheme 2), as the effectiveness of RW
multivariate proposals decreases exponentially with number of
dimensions.

▶ If all schemes are MWG, then Scheme 3 (if available) is always
better than the other two. However, if Scheme 1 is exact Gibbs and
Scheme 3 is MWG, then often ESS(Scheme 1) ≥ ESS(Scheme 3) if
number of parameters is large and few are being collapsed.



A Receipe for Basic MCMC

▶ Goal: Sample from

p(θ | y) ∝ ρ(θ) = L(θ | y)× π(θ), θ = (θ1, . . . , θd).

▶ Receipe:

1. Gibbs Moves: Carefully inspect log ρ(θ) to see if any of the variables
have conjugate distributions, e.g.,

ρ(θ) = − [θi − µ(θ−i )]
2

2σ2(θ−i )
+g(θ−i ) =⇒ p(θi | θ−i , y) ∼ N

(
µ(θ−i ), σ

2(θ−i )
)

(Sometimes advantageous to change π(θ) in order for this work)



A Receipe for Basic MCMC

▶ Goal: Sample from p(θ | y) ∝ ρ(θ)

▶ Receipe:

1. Gibbs Moves: Carefully inspect log ρ(θ) to see if any of the variables
have conjugate distributions, e.g.,

ρ(θ) = − [θi − µ(θ−i )]
2

2σ2(θ−i )
+g(θ−i ) =⇒ p(θi | θ−i , y) ∼ N

(
µ(θ−i ), σ

2(θ−i )
)

2. Metropolis-within-Gibbs: For the remaining variables,

2.1 Suppose ρ(θJ | θ−J ) can be easily maximized. Then use
Metropolized-IID proposal

θJ,prop ∼ N (θ̂J ,−Q−1
J ), QJ =

∂2

∂θJ
2
log ρ(θ̂J ,θ−J )

2.2 Otherwise, do single-component Random-Walk proposal

θj,prop ∼ N (θj,curr, σ
2
j,RW)



Random Walk with Constraints

▶ Posterior Distribution: p(θ | y) ∝ ρ(θ)

▶ Proposal: θj,prop ∼ N (θj,curr, σ
2
j,RW)

▶ Question: What to do if θj > 0?

1. Immediately reject proposal if θj,prop. Easiest solution.
2. Reparametrize ηj = log(θj). Most effective solution, but don’t forget

to apply change-of-variables to prior:

π(ηj ,θ−j) = π(θ)× dθj
dηj

= π(θ)× exp(ηj).

3. Propose from truncated normal:
θj,prop ∼ N (θj,curr, σ

2
j,RW)× 1{θj,prop > 0}.

Careful: Acceptance rate is

α =
ρ(θprop)/T (θprop | θcurr)

ρ(θcurr)/T (θcurr | θprop)
=

ρ(θprop)

ρ(θcurr)︸ ︷︷ ︸
no truncation

×
pnorm

(
θj,prop−θj,curr

σj,RW

)
pnorm

(
θj,curr−θj,prop

σj,RW

)
︸ ︷︷ ︸
trunc. prop. not reversible

,



A Receipe for Basic MCMC

▶ Goal: Sample from p(θ | y) ∝ ρ(θ)

▶ Receipe:

1. Gibbs Moves: Carefully inspect log ρ(θ) to see if any of the variables
have conjugate distributions, as these can be drawn analytically.

2. Metropolis-within-Gibbs: For the remaining variables,

2.1 Suppose ρ(θJ | θ−J ) can be easily maximized. Then use
Metropolized-IID proposal

θJ,prop ∼ N (θ̂J ,−Q−1
J ), QJ =

∂2

∂θJ
2
log ρ(θ̂J ,θ−J )

2.2 Otherwise, do single-component Random-Walk proposal

θj,prop ∼ N (θj,curr, σ
2
j,RW)

Question: How to set the tuning parameters σRW?



Adaptive MCMC

▶ Random-Walk Proposal: θj,prop ∼ N (θj,curr, σ
2
j,RW)

▶ Question: How to set the tuning parameters σRW?
(Ideally want acceptance rate ≈ 45%)

▶ Method 1 – Trial-and-Error.: Can make this part of burn-in.

▶ Method 2 – Adaptive MCMC: Increase/Decrease σj,RW at each
step, depending on whether previous draw was accepted/rejected.
Example:
▶ Target Distribution: Mixture-Normal θ ∼ 1

2
N (−1, .12) + 1

2
N (1, .12)

▶ Update Rule: At step m+ 1, σ
(m+1)
RW = exp(log(σ

(m)
RW)± δ), depending

on whether draw at step m was accepted/rejected.



Adaptive MCMC

▶ Random-Walk Proposal: θj,prop ∼ N (θj,curr, σ
2
j,RW)

▶ Adaptive MCMC: Increase/Decrease σj,RW at each step,
depending on whether previous draw was accepted/rejected.
Example:

▶ Target Distribution:
Mixture-Normal
θ ∼ 1

2
N (−1, .12) + 1

2
N (1, .12)

▶ Update Rule: At step m + 1,
σ
(m+1)
RW = exp(log(σ

(m)
RW)± δ),

depending on whether draw at
step m was accepted/rejected.

▶ Initialization: θ0 = 1,
σRW = 2, δ = .1
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Adaptive MCMC

▶ Random-Walk Proposal: θj,prop ∼ N (θj,curr, σ
2
j,RW)

▶ Adaptive MCMC: Increase/Decrease σj,RW at each step,
depending on whether previous draw was accepted/rejected.
Careful: “Naive” adaptation rules typically don’t preserve the
MCMC stationary distribution.
▶ Naive update rule: σ

(m+1)
RW = exp(log(σ

(m)
RW)± δ)

▶ Correct update rule: σ
(m+1)
RW = exp(log(σ

(m)
RW)± δ/m)

=⇒ Amount of adaptation → 0.



Adaptive MCMC

▶ Random-Walk Proposal: θj,prop ∼ N (θj,curr, σ
2
j,RW)

▶ Adaptive MCMC: Increase/Decrease σj,RW at each step,
depending on whether previous draw was accepted/rejected.

▶ Naive update rule: σ
(m+1)
RW = exp(log(σ

(m)
RW)± δ)

▶ Correct update rule: σ
(m+1)
RW = exp(log(σ

(m)
RW)± δ/m)
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Adaptive Metropolis-within-Gibbs

▶ Goal: Sample from p(θ1, . . . , θd | y) ∝ ρ(θ).

▶ Random-Walk-within-Gibbs Proposal: At step m,

θj,prop ∼ N
(
θj,curr, (σ

(m)
j,RW)2

)
▶ Adaptive jump size:

σ
(m+1)
j,RW = exp(log(σ

(m)
j,RW)± δ(m)), δ(m) = min{δ0, 1/m1/2}.

Increase/decrease depending on whether cumulative fraction of
accepted draws is greater/smaller than 45%.

▶ Caution: This won’t fix everything, i.e., won’t work well when either

σ
(0)
RW or θ(0) is way off. Still, it’s a great receipe for MCMC which I

use all the time.



Resources

▶ Julia Programming Language: MCMC is for-loop intensive, and
these are very slow in R. Julia is very similar to R and Matlab, but it
can execute for-loops extremely fast (see here for technical details).
Moreover, the R package JuliaCall allows you to interface Julia code
directly from R.

▶ Cython: A language very similar to Python which gets translated
into C/C++ that interfaces directly with the Python environment.
In other words, Cython lets you write MCMC algorithms in
something very close to Python but which is orders of magnitude
faster, and which you can use directly from within Python.

▶ Numba: A just-in-time (JIT) compiler for Python. Unlike Cython it
has zero learning curve, but it’s not quite as flexible.

▶ reticulate: An R package for calling Python code or libraries from
within R.

https://julialang.org/
https://julialang.org/publications/julia-fresh-approach-BEKS.pdf
https://github.com/Non-Contradiction/JuliaCall
https://cython.readthedocs.io/en/latest/
http://numba.pydata.org/
https://en.wikipedia.org/wiki/Just-in-time_compilation
https://rstudio.github.io/reticulate/

