Introduction to Bayesian Inference

STAT 946: Advanced Bayesian Computing

▶ Model:

$$
\mathbf{y}=(y_1,\ldots,y_n)\stackrel{\text{iid}}{\sim} f(y\mid \boldsymbol{\theta}), \qquad \boldsymbol{\theta}=(\theta_1,\ldots,\theta_p).
$$

 \blacktriangleright Likelihood:

$$
\mathcal{L}(\boldsymbol{\theta} \mid \mathbf{y}) \propto p(\mathbf{y} \mid \boldsymbol{\theta}) = \prod_{i=1}^n f(y_i \mid \boldsymbol{\theta}).
$$

For calculations, often more useful to work with the loglikelihood:

$$
\ell(\boldsymbol{\theta} \mid \mathbf{y}) = \log \mathcal{L}(\boldsymbol{\theta} \mid \mathbf{y}).
$$

$$
\blacktriangleright \text{ Model: } \mathbf{y} = (y_1, \ldots, y_n) \stackrel{\text{iid}}{\sim} f(y \mid \boldsymbol{\theta})
$$

▶ Point Estimate: Maximum likelihood estimator (MLE)

$$
\hat{\boldsymbol{\theta}} = \hat{\boldsymbol{\theta}}_{\sf ML} = \argmax_{\boldsymbol{\theta}} \ell(\boldsymbol{\theta} \mid \mathbf{y})
$$

Question: Why should we use the MLE?

$$
\blacktriangleright \text{ Model: } \mathbf{y} = (y_1, \ldots, y_n) \stackrel{\text{iid}}{\sim} f(y \mid \boldsymbol{\theta})
$$

Point Estimate: Maximum likelihood estimator (MLE)

$$
\hat{\boldsymbol{\theta}} = \hat{\boldsymbol{\theta}}_{\sf ML} = \argmax_{\boldsymbol{\theta}} \ell(\boldsymbol{\theta} \mid \mathbf{y})
$$

Question: Why should we use the MLE? Answer: As $n \to \infty$, we have $\hat{\bm{\theta}} \sim \mathcal{N}(\bm{\theta}_0, \bm{\mathcal{I}}^{-1}(\bm{\theta}))$, where $\bm{\theta}_0$ is the true parameter value and $\mathcal{I}(\theta_0)$ is the (expected) Fisher Information:

$$
\mathcal{I}(\boldsymbol{\theta}_0) = -E\left[\frac{\partial^2}{\partial \boldsymbol{\theta}^2} \ell(\boldsymbol{\theta}_0 \mid \boldsymbol{y})\right] = -\int \frac{\partial^2}{\partial \boldsymbol{\theta}^2} \ell(\boldsymbol{\theta}_0 \mid \boldsymbol{y}) \cdot p(\boldsymbol{y} \mid \boldsymbol{\theta}_0) d\boldsymbol{y}.
$$

Theorem: Let $\tilde{\theta}$ be any other estimator of θ . Then as $n \to \infty$, either $\tilde{\theta} \nrightarrow \theta_0$ and/or var $(\tilde{\theta}) \geq$ var $(\hat{\theta})$.

\n- Model:
$$
\mathbf{y} = (y_1, \ldots, y_n) \stackrel{\text{iid}}{\sim} f(y \mid \boldsymbol{\theta})
$$
\n- MLE: $\hat{\boldsymbol{\theta}} = \arg \max_{\boldsymbol{\theta}} \ell(\boldsymbol{\theta} \mid \mathbf{y}) \approx \mathcal{N}(\boldsymbol{\theta}, \mathcal{I}^{-1}(\boldsymbol{\theta})),$ $\mathcal{I}(\boldsymbol{\theta}) = -E \left[\frac{\partial^2}{\partial \boldsymbol{\theta}^2} \ell(\boldsymbol{\theta} \mid \mathbf{y}) \right].$
\n

▶ Confidence Interval:

▶ For each θ_i , want a pair of random variables $L = L(y)$ and $U = U(y)$ such that $Pr(L < \theta_i < U) = 95\%$.

▶ Observed Fisher Information: $\hat{\mathcal{I}}=-\frac{\partial^2}{\partial\theta^2}\ell(\hat{\theta}\mid \mathsf{y})\stackrel{n}{\to}\mathcal{I}(\theta)$

$$
\implies \hat{\theta}_i \approx \mathcal{N}(\theta_i, [\hat{\boldsymbol{\mathcal{I}}}^{-1}]_{ii})
$$

 \implies (approximate) 95% CI for θ_i :

$$
\hat{\theta}_i \pm 1.96 \times {\sf se}(\hat{\theta}_i), \qquad {\sf se}(\hat{\theta}_i) = \sqrt{[\hat{\boldsymbol{\mathcal{I}}}^{-1}]_{ii}}.
$$

$$
\blacktriangleright \text{ Model: } \mathbf{y} = (y_1, \ldots, y_n) \stackrel{\text{iid}}{\sim} f(y \mid \boldsymbol{\theta})
$$

- \blacktriangleright MLE: $\hat{\theta} = \argmax_{\theta} \ell(\theta \mid \mathbf{y}) \approx \mathcal{N}(\theta, \mathcal{I}^{-1}(\theta))$
- ▶ Hypothesis Testing:
	- 1. $H_0: \theta \in \Theta_0$
	- 2. Test statistic: $T = T(y)$, large values of T are evidence against H_0
	- 3. p-value:

$$
p_v = Pr(T > T_{obs} | H_0),
$$

where $T_{obs} = T(y_{obs})$ is calculated for current dataset, and

- $T = T(y)$ is for a new dataset.
	- \triangleright p_v is probability of observing more evidence against H_0 in new data than current data, given that H_0 is true.
	- ▶ Typically $p(T | H_0)$ doesn't exist, only $p(T | \theta)$. So often use an asymptotic p-value

$$
\rho_{\text{v}} \approx \Pr(T > T_{\text{obs}} \mid \boldsymbol{\theta} = \hat{\boldsymbol{\theta}}_0), \qquad \hat{\boldsymbol{\theta}}_0 = \underset{\boldsymbol{\theta} \in \boldsymbol{\Theta}_0}{\arg \max} \ell(\boldsymbol{\theta} \mid \boldsymbol{y}).
$$

Bayesian Inference

$$
\blacktriangleright \text{ Model: } \mathbf{y} = (y_1, \ldots, y_n) \stackrel{\text{iid}}{\sim} f(y \mid \boldsymbol{\theta})
$$

- ▶ Likelihood: $\mathcal{L}(\theta | y) \propto \prod_{i=1}^{n} f(y_i | \theta)$
- **Prior Distribution:** $\pi(\theta)$
- ▶ Posterior Distribution:

$$
\rho(\boldsymbol{\theta} \mid \mathbf{y}) = \frac{\rho(\mathbf{y} \mid \boldsymbol{\theta})\pi(\boldsymbol{\theta})}{\rho(\mathbf{y})} \propto \mathcal{L}(\boldsymbol{\theta} \mid \mathbf{y}) \cdot \pi(\boldsymbol{\theta})
$$

IGNORE everything that doesn't depend on θ . I.e., if $g(\theta) \propto p(\theta | y)$, then

$$
p(\boldsymbol{\theta} \mid \mathbf{y}) = Z^{-1}g(\boldsymbol{\theta}), \qquad Z = \int g(\boldsymbol{\theta}) \, d\boldsymbol{\theta},
$$

where Z is the *normalizing constant*.

Bayesian Inference

Model: $\mathbf{y} = (y_1, \ldots, y_n) \stackrel{\text{iid}}{\sim} f(y | \theta)$

- **Prior Distribution:** $\pi(\theta)$
- ▶ Posterior Distribution: $p(\theta | y) \propto \mathcal{L}(\theta | y) \cdot \pi(\theta)$
- ▶ Point Estimate: $\hat{\theta} = E[\theta | \mathbf{y}]$
- ▶ Interval Estimate: (L, U) such that $Pr(L < \theta_i < U | \mathbf{y}) = 95\%$ No asymptotics, and conditioned on this y
- ▶ Hypothesis Testing: $H_0: \theta \in \Theta_0$ *Method 1:* Simply calculate $Pr(H_0 | y) = Pr(\theta \in \Theta_0 | y)!$

Bayesian Inference

$$
\textbf{Model: } \mathbf{y} = (y_1, \ldots, y_n) \stackrel{\text{iid}}{\sim} f(y \mid \boldsymbol{\theta})
$$

- **Prior Distribution:** $\pi(\theta)$
- ▶ Posterior Distribution: $p(\theta | y) \propto \mathcal{L}(\theta | y) \cdot \pi(\theta)$
- ▶ Point Estimate: $\hat{\theta} = E[\theta | y]$
- ▶ Interval Estimate: (L, U) such that $Pr(L < \theta_i < U \mid y) = 95\%$ No asymptotics, and conditioned on this y
- ▶ Hypothesis Testing: $H_0: \theta \in \Theta_0$ *Method 2:* Given a test statistic $T = T(y) \sim f(T | \theta)$, calculate the posterior p-value

$$
\text{Pr}(T > T_{\text{obs}} \mid \mathbf{y}_{\text{obs}}, H_0) = \int_{\boldsymbol{\theta} \in \mathbf{\Theta}_0} \text{Pr}(T > T_{\text{obs}} \mid \boldsymbol{\theta}) \cdot p(\boldsymbol{\theta} \mid \mathbf{y}_{\text{obs}}, \boldsymbol{\theta}) \, \text{d}\boldsymbol{\theta}.
$$

No asymptotics!

$$
\blacksquare \text{ Model: } \mathbf{y} = (y_1, \ldots, y_n) \stackrel{\text{iid}}{\sim} \mathcal{N}(\mu, 1)
$$

Likelihood:

$$
\ell(\mu | \mathbf{y}) = -\frac{1}{2} \sum_{i=1}^{n} (y_i - \mu)^2 = -\frac{n}{2} (\bar{y} - \mu)^2,
$$

where $\bar{y} = \frac{1}{n} \sum_{i=1}^{n} y_i$.

▶ Prior Specification: ALWAYS in this order:

- 1. What prior information do we have about μ ?
- 2. What would make calculations simple?

\n- Model:
$$
\mathbf{y} = (y_1, \ldots, y_n) \stackrel{\text{iid}}{\sim} \mathcal{N}(\mu, 1)
$$
\n- Likelihood: $\ell(\mu \mid \mathbf{y}) = -\frac{1}{2} \sum_{i=1}^n (y_i - \mu)^2 = -\frac{n}{2} (\bar{y} - \mu)^2$
\n- Prior Specification: **ALWAYS** in this order: 1. What prior information do we have about μ ? 2. What would make calculations simple?
\n

In this case, a convenient choice is $\mu \sim \mathcal{N}(\lambda, \tau^2)$, since

$$
\log p(\mu \mid \mathbf{y}) = \ell(\mu \mid \mathbf{y}) + \log \pi(\mu)
$$

= $-\frac{n(\bar{y} - \mu)^2}{2} - \frac{(\lambda - \mu)^2}{2\tau^2} = -\frac{(\mu - B\lambda - (1 - B)\bar{y})^2}{2(1 - B)/n},$

where $B = \frac{1}{n}/(\frac{1}{n} + \tau^2) \in (0,1)$ is called the *shrinkage factor*.

$$
\implies \qquad \mu \mid \mathbf{y} \sim \mathcal{N}\left(B\lambda + (1-B)\bar{y}, \frac{1-B}{n}\right).
$$

- ▶ Model: $\mathbf{y} = (y_1, \ldots, y_n) \stackrel{\text{iid}}{\sim} \mathcal{N}(\mu, 1)$
- ▶ Likelihood: $\ell(\mu | y) = -\frac{n}{2}(\bar{y} \mu)^2$ Prior: $\mu \sim \mathcal{N}(\lambda, \tau^2)$
- ▶ Posterior: $\mu | y \sim \mathcal{N} (B\lambda + (1-B)\bar{y}, \frac{1-B}{n}), \qquad B = \frac{1}{n} / (\frac{1}{n} + \tau^2).$
	- 1. $\log p(\mu | \mathbf{y}) = -\frac{1}{2} [n(\bar{y} \mu)^2 + \tau^{-2} (\lambda \mu)^2] = \ell(\mu | \mathbf{y}, \tilde{\mathbf{y}}),$ where \tilde{y} consists of τ^{-2} additional data points with mean λ . \implies Think of the prior as adding "fake" data to the data you already have.
	- 2. As $\tau \to \infty$, posterior converges to $\mu \mid \mathbf{y} \sim \mathcal{N}(\bar{y}, \frac{1}{n}).$ Gives exactly same point and interval estimate as Frequentist inference.

But as $\tau \to \infty$ we have $\pi(\mu) \propto 1$ which is not a PDF...

General Case: Exponential Families

► Model:
$$
Y = (y_1, ..., y_n) \stackrel{\text{iid}}{\sim} \exp \{ T' \eta - \Psi(\eta) \} \cdot h(y)
$$

\n▶ Likelihood: $\ell(\eta | Y) = \sum_{i=1}^{n} [T'_i \eta - \Psi(\eta)]$
\n $= n[\bar{T}'\eta - \Psi(\eta)], \qquad \bar{T} = \frac{1}{n} \sum_{i=1}^{n} T_i$

\n- Conjugate Prior:
$$
\pi(\eta) = g(\eta \mid \mathcal{T}_0, \nu_0)
$$
\n- $\propto \exp\left\{\nu_0 \left[\mathcal{T}_0' \eta - \Psi(\eta)\right]\right\}$
\n

▶ Posterior Distribution: Has same form as the prior:

$$
\log p(\boldsymbol{\eta} \mid \boldsymbol{Y}) = n[\bar{\boldsymbol{T}}'\boldsymbol{\eta} - \Psi(\boldsymbol{\eta})] + \nu_0[\mathbf{T}_0'\boldsymbol{\eta} - \Psi(\boldsymbol{\eta})] \n\implies \qquad \boldsymbol{\eta} \mid \boldsymbol{Y} \sim g\left(\boldsymbol{\eta} \mid \frac{n}{n+\nu_0}\bar{\boldsymbol{T}} + \frac{\nu_0}{n+\nu_0}\mathbf{T}_0, n+\nu_0\right)
$$

General Case: Exponential Families

$$
\blacktriangleright \text{ Model: } \mathbf{Y} = (\mathbf{y}_1, \ldots, \mathbf{y}_n) \stackrel{\text{iid}}{\sim} \exp \{ \mathbf{T}' \boldsymbol{\eta} - \boldsymbol{\Psi}(\boldsymbol{\eta}) \} \cdot h(\mathbf{y})
$$

- ▶ Loglikelihood: $\ell(\eta | \mathbf{Y}) = n[\bar{\mathbf{T}}'\eta \Psi(\eta)], \qquad \bar{\mathbf{T}} = \frac{1}{n} \sum_{i=1}^{n} \mathbf{T}_i$
- ▶ Conjugate Prior: $\pi(\eta)=g(\eta \mid \bm{T}_0, \nu_0) \propto \exp\left\{\nu_0\big[\bm{T}_0'\eta \bm{\Psi}(\eta)\big]\right\}$
- **Posterior Distribution:**

$$
\boldsymbol{\eta} \mid \boldsymbol{Y} \sim g\left(\boldsymbol{\eta} \mid \tfrac{n}{n+\nu_0}\bar{\boldsymbol{T}} + \tfrac{\nu_0}{n+\nu_0}\boldsymbol{T}_0, n+\nu_0\right)
$$

▶ Interpretation: The conjugate prior family is not unique, but the one above is proportional to the likelihood. In this case, the prior is as if we'd observed ν_0 additional observations with average sufficient statistic T_0 . An example of a conjugate prior not proportional to $\mathcal{L}(n | Y)$: mixture of above priors, i.e.,

$$
\pi(\boldsymbol{\eta}) = \rho \cdot \boldsymbol{g}(\boldsymbol{\eta} \mid \boldsymbol{\mathsf{T}}_1, \nu_1) + (1 - \rho) \cdot \boldsymbol{g}(\boldsymbol{\eta} \mid \boldsymbol{\mathsf{T}}_2, \nu_2).
$$

General Case: Exponential Families

$$
\blacktriangleright \text{ Model: } \mathbf{Y} = (\mathbf{y}_1, \ldots, \mathbf{y}_n) \stackrel{\text{iid}}{\sim} \exp \{ \mathbf{T}' \boldsymbol{\eta} - \boldsymbol{\Psi}(\boldsymbol{\eta}) \} \cdot h(\mathbf{y})
$$

- ▶ Loglikelihood: $\ell(\eta | Y) = n[\bar{T}'\eta \Psi(\eta)], \qquad \bar{T} = \frac{1}{n} \sum_{i=1}^{n} T_i$
- ▶ Conjugate Prior: $\pi(\eta)=g(\eta \mid \bm{T}_0, \nu_0) \propto \exp\left\{\nu_0\big[\bm{T}_0'\eta \bm{\Psi}(\eta)\big]\right\}$

▶ Posterior Distribution:

$$
\eta \mid \mathbf{Y} \sim g\left(\eta \mid \frac{n}{n+\nu_0}\bar{\mathbf{T}} + \frac{\nu_0}{n+\nu_0}\mathbf{T}_0, n+\nu_0\right)
$$

▶ Improper Priors: As $\nu_0 \to 0$ we get $\pi(\eta) \propto 1$, and thus $p(n | Y) \propto \mathcal{L}(n | Y)$. However, $\pi(\eta) \propto 1$ typically doesn't integrate to 1, so are we allowed to use this as a prior? OK as long as $\int \mathcal{L}(\boldsymbol{\eta} \mid \boldsymbol{Y}) \pi(\boldsymbol{\eta}) \, \text{d}\boldsymbol{\eta} < \infty$. This is because the posterior is

$$
p(\eta \mid \boldsymbol{Y}) = \frac{\mathcal{L}(\eta \mid \boldsymbol{Y})\pi(\eta)}{\int \mathcal{L}(\eta \mid \boldsymbol{y})\pi(\eta) d\eta},
$$

so get a valid distribution as long as denominator is finite.

Example I (Continued)

- ▶ Model: $y = (y_1, \ldots, y_n) \stackrel{\text{iid}}{\sim} \mathcal{N}(\mu, 1)$
- ▶ Likelihood: $\ell(\mu | y) = -\frac{n}{2}(\bar{y} \mu)^2$ Prior: $\mu \sim \mathcal{N}(\lambda, \tau^2)$
- ▶ Posterior:
	- $\mu \mid \mathbf{y} \sim \mathcal{N}\left(B\lambda + (1-B)\bar{y}, \frac{1-B}{n}\right), \qquad B = \left(\frac{1}{n}\right) / \left(\frac{1}{n} + \tau^2\right)$
- **► Comparison:** $\hat{\mu}_{\text{MI}} = \bar{y}$ vs. $\hat{\mu}_{\text{B}} = E[\mu | \mathbf{y}] = B\lambda + (1 B)\bar{y}$.

▶ Metric: mean square error

$$
\mathsf{MSE}(\hat{\mu}) = E[(\hat{\mu} - \mu)^2] = (\underbrace{E[\hat{\mu}] - \mu}_{\text{MSE}(\hat{\mu}_{\text{ML}})}^2 + \text{var}(\hat{\mu})
$$
\n
$$
\blacktriangleright \mathsf{MSE}(\hat{\mu}_{\text{ML}}) = 1/n, \qquad \mathsf{MSE}(\hat{\mu}_{\text{B}}) = B^2(\hat{\chi}^{\text{size}}(\hat{\mu}_{\text{H}})^2 + (1 - B)^2/n.
$$
\n
$$
\blacktriangleright \text{Plot } \mathsf{MSE}(\hat{\mu}_{\text{B}}) / \mathsf{MSE}(\hat{\mu}_{\text{ML}}) \text{ as a function of } \Delta = n^{1/2} |\lambda - \mu| \text{ and } B.
$$

Example I (Continued)

Summary:

- ▶ Many statistical models have conjugate priors, which one can think of as adding fake data to the data we have already observed.
- \triangleright Priors don't need to integrate to 1, as long as the posterior does. This can be useful to avoid thinking too much about what prior to use, i.e., simply use $\pi(\theta) \propto 1$.

\n- Model:
$$
y = (y_1, \ldots, y_n) \stackrel{\text{iid}}{\sim} \mathcal{N}(0, \sigma^2)
$$
\n- Likelihood:
\n

$$
\mathcal{L}(\sigma^2 \mid \mathbf{y}) \propto \exp\left\{-\frac{n}{2}\log \sigma^2 - \frac{S^2/2}{\sigma^2}\right\}, \qquad S = \sum_{i=1}^n y_i^2.
$$

▶ Conjugate Prior:

$$
\sigma^2 \sim \text{Inv-Gamma}(\alpha, \beta)
$$

$$
\iff \pi(\sigma^2) \propto \exp\left\{-(\alpha+1)\log \sigma^2 - \frac{\beta}{\sigma^2}\right\}
$$

▶ Posterior Distribution:

$$
\sigma^2 \mid \mathbf{y} \sim \mathsf{Inv}\text{-}\mathsf{Gamma}\left(\tfrac{n}{2} + \alpha, \tfrac{\mathsf{S}}{2} + \beta\right)
$$

- ▶ Model: $\mathbf{y} = (y_1, \ldots, y_n) \stackrel{\text{iid}}{\sim} \mathcal{N}(0, \sigma^2)$
- ▶ Likelihood: $\ell(\sigma^2 | y) = -\frac{1}{2} (S/\sigma^2 + n \log \sigma^2), \qquad S = \sum_{i=1}^n y_i^2.$
- ▶ Conjugate Prior: $\sigma^2 \sim \mathsf{Inv}\text{-}\mathsf{Gamma}(\alpha,\beta) \iff \pi(\sigma^2) \propto (1/\sigma^2)^{\alpha+1} e^{-\beta/\sigma^2}$
- ▶ Posterior Distribution:
	- $\sigma^2 \left| \right. \mathbf{y} \sim$ Inv-Gamma $\left(\frac{n}{2} + \alpha, \frac{S}{2} + \beta \right) \quad \implies \quad \hat{\sigma}_{\mathsf{B}}^2 = E[\sigma^2 \mid \mathbf{y}] =$ $\frac{\frac{S}{2}+\beta}{\frac{n}{2}+\alpha-1}$

Prior	(α, β)	$\pi(\sigma^2)$	$\hat{\sigma}_{B}^2$	
Flat	$(-1, 0)$	$\propto 1$	$S/(n-4)$	
MLE-matching	$(1, 0)$	$\propto 1/\sigma^4$	S/n	$(=\hat{\sigma}_{ML}^2)$

$$
\blacktriangleright \text{ Model: } \mathbf{y} = (y_1, \ldots, y_n) \stackrel{\text{iid}}{\sim} \mathcal{N}(0, \sigma^2)
$$

▶ Likelihood: $\ell(\sigma^2 | y) = -\frac{1}{2} (S/\sigma^2 + n \log \sigma^2), \qquad S = \sum_{i=1}^n y_i^2.$

▶ Maximum Likelihood Estimate:

- **►** For variance: σ^2 : $\hat{\sigma}_{ML}^2 = S/n$
- For precision: $\tau^2 = 1/\sigma^2$: $\hat{\tau}_{ML}^2 = n/S = 1/\hat{\sigma}_{ML}^2$.
- **Invariance Principle:** For given $\ell(\theta | y)$, if $\eta = g(\theta)$ and g is a bijection, then can reparametrize the model via $\ell(\bm{\eta} \mid \bm{\mathsf{y}}) = \ell(\bm{\theta} = \bm{\mathsf{g}}^{-1}(\bm{\eta}) \mid \bm{\mathsf{y}})$, such that

$$
\max_{\boldsymbol{\eta}} \ell(\boldsymbol{\eta} \mid \mathbf{y}) \leq \ell(\boldsymbol{\theta} = \hat{\boldsymbol{\theta}}_{\text{ML}} \mid \mathbf{y}) = \ell(\boldsymbol{\eta} = g(\hat{\boldsymbol{\theta}}_{\text{ML}}) \mid \mathbf{y})
$$

\n
$$
\implies \hat{\boldsymbol{\eta}}_{\text{ML}} = g(\hat{\boldsymbol{\theta}}_{\text{ML}}).
$$

$$
\blacktriangleright \text{ Model: } \mathbf{y} = (y_1, \ldots, y_n) \stackrel{\text{iid}}{\sim} \mathcal{N}(0, \sigma^2)
$$

- ▶ Conjugate Prior: $\sigma^2 \sim {\sf Inv\text{-}Gamma}(\alpha,\beta) \iff \pi(\sigma^2) \propto (1/\sigma^2)^{\alpha+1} e^{-\beta/\sigma^2}$
- ▶ Posterior Distribution: $\sigma^2 | y \sim$ Inv-Gamma $(\frac{n}{2} + \alpha, \frac{5}{2} + \beta)$
- ▶ Bayesian Estimate:

\n- For variance:
$$
\sigma^2
$$
: (MLE is $\hat{\sigma}_{\text{ML}}^2 = S/n$)
\n- $\hat{\sigma}_{\text{B}}^2 = E[\sigma^2 \mid \mathbf{y}] = \left(\frac{S}{2} + \beta\right) / \left(\frac{n}{2} + \alpha - 1\right)$
\n- ⇒ MLE-matching prior is $\pi(\sigma^2) \propto 1/\sigma^4$
\n- For precision: $\tau^2 = 1/\sigma^2$: (MLE is $\hat{\tau}_{\text{ML}}^2 = n/S$)
\n- $\tau^2 \mid \mathbf{y} \sim \text{Gamma}\left(\frac{n}{2} + \alpha, \frac{S}{2} + \beta\right) \implies \hat{\tau}_{\text{B}}^2 = E[\tau^2 \mid \mathbf{y}] = \frac{\frac{n}{2} + \alpha}{\frac{S}{2} + \beta}$
\n- ⇒ MLE-matching prior is: $\pi(\sigma^2) \propto 1/\sigma^2$
\n

Summary:

- ▶ Bayesian inference cannot be made invariant to the choice of prior.
	- **►** Change-of-Variables Formula: If $\pi(\theta) = f(\theta)$ and $\eta = g(\theta)$ is a bijection, then prior on η scale is

$$
\pi(\boldsymbol{\eta}) = f(g^{-1}(\boldsymbol{\eta})) \times \left| \frac{\mathrm{d}}{\mathrm{d}\boldsymbol{\eta}} g^{-1}(\boldsymbol{\eta}) \right|.
$$

 \implies No "completely uninformative" prior for every parameter transformation, since

$$
\pi(\theta) \propto 1 \qquad \Longrightarrow \qquad \pi(\eta) \propto \left| \frac{\mathrm{d}}{\mathrm{d}\eta} g^{-1}(\eta) \right|.
$$

Summary:

▶ Bayesian inference cannot be made invariant to the choice of prior. No "completely uninformative" prior for every parameter transformation: if $\eta = g(\theta)$, then

$$
\pi(\boldsymbol{\theta}) \propto 1 \qquad \Longrightarrow \qquad \pi(\boldsymbol{\eta}) \propto \left| \frac{d}{d\boldsymbol{\eta}} g^{-1}(\boldsymbol{\eta}) \right|.
$$

- **Folk theorem:** For any choice of prior $\pi(\theta)$ and fixed sample size *n*, there exists some $\eta = g(\theta)$ such that $\hat{\eta}_B = E[\eta | y]$ is arbitrarily far from $\hat{\eta}_{ML}$.
- **Asymptotic theory:** For any choice of prior $\pi(\theta) > 0$ for all $\boldsymbol{\theta} \in \mathbb{R}^p$, as $n \to \infty$ we have

$$
\boldsymbol{\theta} \mid \mathbf{y} \rightarrow \mathcal{N}(\hat{\boldsymbol{\theta}}_{\sf ML}, \hat{\mathcal{I}}).
$$

 \implies Bayesian and Frequentist inference are asymptotically equivalent.

Decision Theory

- \blacktriangleright Goal: Compare various estimators $\hat{\theta}_k = \hat{\theta}_k(\bm{y})$ of θ .
- ▶ Loss Function: $L(\hat{\theta}, \theta) > 0$ and $L(\hat{\theta}, \theta) = 0 \iff \hat{\theta} = \theta$. (Most common one is $L(\hat{\theta},\theta)=||\hat{\theta}-\theta||^2$.)
- **Risk:** Expected loss as a function of true parameter θ :

$$
R(\hat{\theta} \mid \theta) = E[L(\hat{\theta}, \theta) \mid \theta] = \int L(\hat{\theta}(\mathbf{y}), \theta) \cdot p(\mathbf{y} \mid \theta) d\mathbf{y}.
$$

 \blacktriangleright Admissibility: $\hat{\theta}_1$ is an inadmissible estimator if exists $\hat{\theta}_2$ such that

$$
R(\hat{\theta}_2 \mid \theta) \preceq R(\hat{\theta}_1 \mid \theta) \quad \forall \ \theta,
$$

i.e., the risk of $\hat{\theta}_2$ is never greater than that of $\hat{\theta}_1$, and for *at least* one value of θ it is lower. Otherwise, $\hat{\theta}_1$ is admissible, i.e., isn't strictly dominated by another estimator.

Decision Theory

- \blacktriangleright Goal: Compare various estimators $\hat{\theta}_k = \hat{\theta}_k(\bm{y})$ of θ .
- ▶ Loss Function: $L(\hat{\theta}, \theta) \ge 0$ and $L(\hat{\theta}, \theta) = 0 \iff \hat{\theta} = \theta$.
- ▶ Risk: $R(\hat{\theta} | \theta) = E[L(\hat{\theta}, \theta) | \theta] = \int L(\hat{\theta}(\mathbf{y}), \theta) \cdot p(\mathbf{y} | \theta) d\mathbf{y}$.
- Admissibility: $\hat{\theta}_1$ is inadmissible if exists $\hat{\theta}_2$ such that $R(\hat{\theta}_2, \theta) \preceq R(\hat{\theta}_1, \theta).$
- **Bayes Rule:** For given prior $\pi(\theta)$, the Bayes rule minimizes the expected loss conditioned on the data:

$$
\hat{\theta}_{\text{BR}} = \argmin_{\tilde{\boldsymbol{\theta}}} E[L(\tilde{\boldsymbol{\theta}}, \boldsymbol{\theta}) \mid \boldsymbol{y}] = \argmin_{\tilde{\boldsymbol{\theta}}} \int L(\tilde{\boldsymbol{\theta}}, \boldsymbol{\theta}) \cdot p(\boldsymbol{\theta} \mid \boldsymbol{y}) \mathop{}\!\mathrm{d} \boldsymbol{\theta}.
$$

- ▶ Point Estimate: For $L(\hat{\theta}, \theta) = \|\hat{\theta} \theta\|^2$ we have $\hat{\theta}_{\mathsf{BR}} = E[\theta \mid \mathsf{y}]$.
- **Credible Interval:** For $\tau = g(\theta)$ and

$$
L(\hat{\tau},\tau)=(\hat{\tau}-\tau)\cdot(\alpha-\delta\{\hat{\tau}-\tau<0\}),
$$

we have $\hat{\tau}_{\mathsf{BR}} = {\bar{F}}_{\tau|\bm{\mathsf{y}}}^{-1}(\alpha \mid \bm{\mathsf{y}}),$ the α -level quantile of $p(\tau \mid \bm{\mathsf{y}}).$

Decision Theory

- \blacktriangleright Goal: Compare various estimators $\hat{\theta}_k = \hat{\theta}_k(\bm{y})$ of θ .
- ▶ Loss Function: $L(\hat{\theta}, \theta) > 0$ and $L(\hat{\theta}, \theta) = 0 \iff \hat{\theta} = \theta$.
- ▶ Risk: $R(\hat{\theta} | \theta) = E[L(\hat{\theta}, \theta) | \theta] = \int L(\hat{\theta}(\mathbf{y}), \theta) \cdot p(\mathbf{y} | \theta) d\mathbf{y}$.
- Admissibility: $\hat{\theta}_1$ is inadmissible if exists $\hat{\theta}_2$ such that $R(\hat{\theta}_2, \theta) \preceq R(\hat{\theta}_1, \theta).$
- **Bayes Rule:** $\hat{\theta}_{\text{BR}} = \arg \min_{\tilde{\theta}} E[L(\tilde{\theta}, \theta) | \mathbf{y}]$.

Theorem: If $\pi(\theta)$ is proper, then $\hat{\theta}_{BR}$ is admissible. Moreover, any admissible $\hat{\theta}$ is the Bayes rule for some proper or improper prior. (However, not all Bayes rules from improper priors are admissible.) \implies Only estimators which have a Bayesian interpretation can be admissible.

Bayesian vs. Frequentist?

Some bad words:

- \blacktriangleright Bayesian inference is subjective
- \blacktriangleright Frequentist inference is ad-hoc

Don't be Bayesian or Frequentist – use Bayesian or Frequentist methods depending on the problem.

"Strive for simplicity. Stubbornly resist complexity in your approach." – Rob Tibshirani, inventor of LASSO

Example: When NOT to Use Bayes

$$
\triangleright \text{ Model: } \mathbf{y} = (y_1, \ldots, y_{100}) \stackrel{\text{iid}}{\sim} F(y).
$$

- ► Goal: Estimate $\tau = F^{-1}(.25)$, the 25% quantile of $F(y)$.
- ▶ Frequentist Inference:
	- **▶** Point Estimate: $\hat{\tau} = y_{(25)}$, the corresponding order statistic.
	- Interval Estimate: For any $F(y)$ and $0 < p < 1$, let $X=\#\{y_i:y_i< F^{-1}(\rho)\}$. Then $X\sim \mathsf{Binomial}(100,\rho)$, and

$$
\Pr(y_{(a)} < F^{-1}(p) < y_{(b)}) = \sum_{i=a}^{b-1} {100 \choose i} p^i (1-p)^{100-i}.
$$

 \implies 95% CI: $(y_{(17)}, y_{(34)})$

▶ Bayesian Point/Interval Estimates??

Example: When to Use Bayes

 \triangleright Data: $K = 8$ schools and their test scores:

Goal: Rank the schools based on μ_i , the "true" score for each school.

▶ Parameter Inference: Consider the following two extremes:

- 1. Individual means: $\hat{\mu}_i = x_i$.
- 2. Common mean: $\hat{\mu}_i \equiv \sum_{j=1}^K w_j \cdot x_j$, $w_j = \sigma_j^{-2}/(\sum_{k=1}^K \sigma_k^{-2})$. (This is the MLE of model $x_i \stackrel{\text{ind}}{\sim} \mathcal{N}(\mu, \sigma_i^2)$.)

Neither are good for ranking (1 has high uncertainty, 2 makes all schools equal).

A third alternative is to compromise between the two.

Example: When to Use Bayes

- \triangleright Data: $K = 8$ schools and their test scores.
- **Goal:** Rank the schools based on μ_i , the "true" score for each school.
- ▶ Parameter Inference: Consider the following hierarchical model:

$$
x_i \mid \mu_i \stackrel{\text{ind}}{\sim} \mathcal{N}(\mu_i, \sigma_i^2), \qquad \mu_i \stackrel{\text{iid}}{\sim} \mathcal{N}(\lambda, \tau^2).
$$

The parameters $\mu = (\mu_1, \dots, \mu_K)$ are called random effects.

• Posterior distribution of μ_i (though nothing Bayesian yet):

$$
\mu_i \mid \mathbf{x} \stackrel{\text{ind}}{\sim} \mathcal{N}\big(B_i \lambda + (1 - B_i) x_i, (1 - B_i) \sigma_i^2\big), \qquad B_i = \sigma_i^{-2} / (\sigma_i^{-2} + \tau^{-2}).
$$

Thus we have the two extremes:

- 1. Individual means: $\tau = \infty \implies E[\mu_i \mid \mathbf{x}] = x_i$
- 2. Common mean: $\tau = 0 \implies E[\mu_i | \mathbf{x}] = \lambda$

Moreover, for any $0 < \tau < \infty$ we can compromise between the two (i.e., partial pooling).

Hierarchical Modeling: Frequentist Approach

- ▶ Hierarchical Model: $x_i | \mu_i \stackrel{\text{ind}}{\sim} \mathcal{N}(\mu_i, \sigma_i^2), \quad \mu_i \stackrel{\text{iid}}{\sim} \mathcal{N}(\lambda, \tau^2).$
- ▶ Marginal Data Distribution: $x_i \stackrel{\text{ind}}{\sim} \mathcal{N}(\lambda, \sigma_i^2 + \tau^2)$.
- ▶ Profile Likelihood:

$$
\hat{\lambda}_{\tau} = \arg \max_{\lambda} \ell(\lambda, \tau | \mathbf{x}) = \frac{\sum_{i=1}^{K} x_i / (\sigma_i^2 + \tau^2)}{\sum_{j=1}^{K} 1 / (\sigma_j^2 + \tau^2)}
$$
\n
$$
\ell_{\text{prof}}(\tau | \mathbf{x}) = \ell(\lambda = \hat{\lambda}_{\tau}, \tau | \mathbf{x}) = -\frac{1}{2} \sum_{i=1}^{K} \left[\frac{(x_i - \hat{\lambda}_{\tau})^2}{\sigma_i^2 + \tau^2} + \log(\sigma_i^2 + \tau^2) \right]
$$

 \implies 2-d optimization reduces to 1-d.

Hierarchical Modeling: Frequentist Approach

- \blacktriangleright Hierarchical model: $\mu_i \stackrel{\text{ind}}{\sim} \mathcal{N}(\mu_i, \sigma_i^2), \qquad \mu_i \stackrel{\text{iid}}{\sim} \mathcal{N}(\lambda, \tau^2)$
- ▶ Profile likelihood:

Hierarchical Modeling: Frequentist Approach

▶ Hierarchical model: $x_i | \mu_i \stackrel{\text{ind}}{\sim} \mathcal{N}(\mu_i, \sigma_i^2), \quad \mu_i \stackrel{\text{iid}}{\sim} \mathcal{N}(\lambda, \tau^2)$ ▶ Profile likelihood:

$$
\implies \hat{\tau}_{ML}=0.
$$

Random-Effects Posterior:

$$
\mu_i \mid \mathbf{x} \stackrel{\text{ind}}{\sim} \mathcal{N}\big(B_i \lambda + (1 - B_i) x_i, (1 - B_i) \sigma_i^2\big), \quad B_i = \sigma_i^2/(\sigma_i^2 + \tau^2).
$$

\n- Naive CI for
$$
\mu_i
$$
: \n
$$
[\hat{B}_i \hat{\lambda} + (1 - \hat{B}_i)x_i] \pm 1.96 \times \sigma_i \sqrt{1 - \hat{B}_i}, \qquad \hat{\lambda} = \hat{\lambda}_{\hat{\tau}}
$$
\n
\n- Ridiculous CI $\hat{\lambda} \pm 1.96 \times 0$ with plugin $\hat{\tau} = \hat{\tau} \frac{\hat{B}_i}{M} = B_i(\hat{\tau})$.
\n

 \blacktriangleright Hierarchical model: $\mu_i \stackrel{\text{ind}}{\sim} \mathcal{N}(\mu_i, \sigma_i^2), \qquad \mu_i \stackrel{\text{iid}}{\sim} \mathcal{N}(\lambda, \tau^2)$

- ▶ Random-Effects Posterior:
	- $\mu_i \mid \mathbf{x} \stackrel{\text{ind}}{\sim} \mathcal{N}\big(B_i\lambda + (1-B_i)\mathsf{x}_i, (1-B_i)\sigma_i^2\big), \quad B_i = \sigma_i^2/(\sigma_i^2 + \tau^2).$ \blacktriangleright Naive CI for $\mu_i: \hat{\lambda} \pm 0$
	- \blacktriangleright Bootstrap CI for μ_i :
		- 1. Generate bootstrap datasets $\tilde{\mathbf{x}}^{(1)}, \ldots, \tilde{\mathbf{x}}^{(M)}, \quad \tilde{\mathbf{x}}^{(m)} = (\tilde{x}_1^{(m)}, \ldots, \tilde{x}_K^{(m)})$ Parametric: $\tilde{x}_i^{(m)} \stackrel{\text{ind}}{\sim} \mathcal{N}(\mu_i, \sigma_i^2), \qquad \mu_i \stackrel{\text{iid}}{\sim} \mathcal{N}(\hat{\lambda}, \hat{\tau}^2)$ Nonparametric: $(\tilde{x}_i^{(m)}, \tilde{\sigma}_i^{(m)})$ resampled from $(x_1, \sigma_1), \ldots (x_K, \sigma_K)$ 2. Calculate $(\tilde{\lambda}^{(m)}, \tilde{\tau}^{(m)}) = \argmax \ell(\lambda, \tau \mid \mathbf{x}^{(m)})$ and

 $\tilde{\mu}_i^{(m)} = E[\mu_i \mid \tilde{\mathbf{x}}^{(m)}, \tilde{\lambda}^{(m)}, \tilde{\tau}^{(m)}] = \tilde{B}_i^{(m)} \tilde{\lambda}^{(m)} + (1-\tilde{B}_i^{(m)}) \tilde{\mathbf{x}}_i^{(m)}$
3. Basic Bootstrap 95% CI: $(\hat{\mu}_i + \tilde{L}_i, \hat{\mu}_i + \tilde{U}_i)$, where $(\tilde{L}_i, \tilde{U}_i)$ are the the 2.5% and 97.5% sample quantiles of $\tilde{\mathcal{T}}_i^{(1)},\ldots,\tilde{\mathcal{T}}_i^{(M)},$ where $\tilde{\tau}_i^{(m)} = \hat{\mu}_i - \tilde{\mu}_i^{(m)}$.

▶ Hierarchical model: $x_i | \mu_i \stackrel{\text{ind}}{\sim} \mathcal{N}(\mu_i, \sigma_i^2), \quad \mu_i \stackrel{\text{iid}}{\sim} \mathcal{N}(\lambda, \tau^2)$ \blacktriangleright Bootstrap distribution of $\tilde{\tau}$:

▶ Hierarchical model: $x_i | \mu_i \stackrel{\text{ind}}{\sim} \mathcal{N}(\mu_i, \sigma_i^2), \quad \mu_i \stackrel{\text{iid}}{\sim} \mathcal{N}(\lambda, \tau^2)$ ▶ Bootstrap distribution of $\tilde{\mu}_i$:

- ▶ Hierarchical model: $x_i | \mu_i \stackrel{\text{ind}}{\sim} \mathcal{N}(\mu_i, \sigma_i^2), \quad \mu_i \stackrel{\text{iid}}{\sim} \mathcal{N}(\lambda, \tau^2)$ ▶ Random-Effects Estimate:
	- ▶ Naive, Bootstrap-P, Bootstrap-NP: $\hat{\mu}_i \approx \hat{\lambda}$, i.e., full pooling
	- **•** Penalize $\ell_{\text{prof}}(\tau | \mathbf{x})$ away from $\tau = 0$? If so, how? (e.g., R package [lme4](https://CRAN.R-project.org/package=lme4))

▶ Hierarchical model: $x_i | \mu_i \stackrel{\text{ind}}{\sim} \mathcal{N}(\mu_i, \sigma_i^2), \quad \mu_i \stackrel{\text{iid}}{\sim} \mathcal{N}(\lambda, \tau^2)$ **• Prior:** If $\pi(\lambda, \tau) = \pi(\tau)$, then

$$
\begin{split} \log p(\lambda,\tau \mid \mathbf{x}) &= \ell(\lambda,\tau \mid \mathbf{x}) + \log \pi(\tau) \\ &= -\frac{1}{2} \sum_{i=1}^{K} \left[\frac{(x_i - \lambda)^2}{\sigma_i^2 + \tau^2} + \log(\sigma_i^2 + \tau^2) \right] + \log \pi(\tau) \\ &= -\frac{1}{2} \left[\frac{(\lambda - \lambda_\tau)^2}{\sigma_\tau^2} + \log(\sigma_\tau^2) \right] + \ell_{\text{prof}}(\tau \mid \mathbf{x}) + \log(\sigma_\tau) + \log \pi(\tau), \end{split}
$$

where $\lambda_\tau=\hat{\lambda}_\tau$ (the conditional MLE) and $\sigma_\tau^2=1/\sum_{i=1}^K(\sigma_i^2+\tau^2)^{-1}.$

$$
\implies \lambda \mid \tau, \mathbf{x} \sim \mathcal{N}(\lambda_{\tau}, \sigma_{\tau}^{2})
$$

$$
\log p(\tau \mid \mathbf{x}) = \ell_{\text{prof}}(\tau \mid \mathbf{x}) + \log(\sigma_{\tau}) + \log \pi(\tau)
$$

Bayesian equivalent of profile likelihood is integrating some parameters out

▶ Hierarchical model: $x_i | \mu_i \stackrel{\text{ind}}{\sim} \mathcal{N}(\mu_i, \sigma_i^2), \quad \mu_i \stackrel{\text{iid}}{\sim} \mathcal{N}(\lambda, \tau^2)$ **• Posterior:** If $\pi(\lambda, \tau) = \pi(\tau)$,

$$
\lambda \mid \tau, \mathbf{x} \sim \mathcal{N}(\lambda_{\tau}, \sigma_{\tau}^{2})
$$

$$
\log p(\tau \mid \mathbf{x}) = \ell_{\text{prof}}(\tau \mid \mathbf{x}) + \log(\sigma_{\tau}) + \log \pi(\tau)
$$

▶ Possible priors:

1. $\pi(\tau) \propto 1$ 2. $\pi(\tau^2) \propto 1 \implies \pi(\tau) \propto \tau$

▶ Hierarchical model: $x_i | \mu_i \stackrel{\text{ind}}{\sim} \mathcal{N}(\mu_i, \sigma_i^2), \quad \mu_i \stackrel{\text{iid}}{\sim} \mathcal{N}(\lambda, \tau^2)$ **• Posterior:** If $\pi(\lambda, \tau) = \pi(\tau)$,

$$
\lambda \mid \tau, \mathbf{x} \sim \mathcal{N}(\lambda_{\tau}, \sigma_{\tau}^{2})
$$

$$
\log p(\tau \mid \mathbf{x}) = \ell_{\text{prof}}(\tau \mid \mathbf{x}) + \log(\sigma_{\tau}) + \log \pi(\tau)
$$

- ▶ Hierarchical model: $x_i | \mu_i \stackrel{\text{ind}}{\sim} \mathcal{N}(\mu_i, \sigma_i^2), \quad \mu_i \stackrel{\text{iid}}{\sim} \mathcal{N}(\lambda, \tau^2)$ Prior: $\pi(\lambda, \tau^2) \propto 1$
- \blacktriangleright Inference for μ :

$$
p(\boldsymbol{\mu} \mid \boldsymbol{x}) = \int \frac{p(\boldsymbol{\mu} \mid \lambda, \tau, \boldsymbol{x})}{\mathcal{N}(B\lambda + (1-B)\boldsymbol{x}, (1-B)\sigma^2)} \times p(\lambda \mid \tau, \boldsymbol{x}) \times p(\tau \mid \boldsymbol{x}) d\lambda d\tau
$$

Monte Carlo method:

1.
$$
\tau^{(m)} \stackrel{\text{iid}}{\sim} p(\tau | \mathbf{x})
$$
 (1-d grid sampling)
\n2. $\lambda^{(m)} | \tau^{(1:M)} \stackrel{\text{iid}}{\sim} \mathcal{N}(\lambda_{\tau^{(m)}}, \sigma^2_{\tau^{(m)}})$
\n3. $\mu^{(m)} | \lambda^{(1:M)}, \tau^{(1:M)} \stackrel{\text{iid}}{\sim} \mathcal{N}(B^{(m)}\lambda^{(m)} + (1 - B^{(m)})x, \text{diag}\{(1 - B^{(m)})\sigma^2\})$
\nThis produces *M* iid draws from $p(\mu, \lambda, \tau | \mathbf{x})$.

- ▶ Hierarchical model: $x_i | \mu_i \stackrel{\text{ind}}{\sim} \mathcal{N}(\mu_i, \sigma_i^2), \quad \mu_i \stackrel{\text{iid}}{\sim} \mathcal{N}(\lambda, \tau^2)$
- \blacktriangleright Inference on μ_i :

 \implies Bayesian inference reports more of a difference between the schools.

Quantity of Interest

 \blacktriangleright Hierarchical model: $\mu_i \stackrel{\text{ind}}{\sim} \mathcal{N}(\mu_i, \sigma_i^2), \qquad \mu_i \stackrel{\text{iid}}{\sim} \mathcal{N}(\lambda, \tau^2)$

• Inference on rankings:

So Pr(School A = Rank $1 | x$) = 25%, Pr(School A = Rank $8 | x$) = 8% , etc.

Quantity of Interest

- \blacktriangleright Hierarchical model: $\mu_i \stackrel{\text{ind}}{\sim} \mathcal{N}(\mu_i, \sigma_i^2), \qquad \mu_i \stackrel{\text{iid}}{\sim} \mathcal{N}(\lambda, \tau^2)$
- ▶ Inference on rankings:

So Pr(Rank $1 =$ School A $|x| = 25\%$, Pr(Rank $1 =$ School E $|x| = 8\%$, etc.