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Recap of Frequentist Inference

▶ Model:

y = (y1, . . . , yn)
iid∼ f (y | θ), θ = (θ1, . . . , θp).

▶ Likelihood:

L(θ | y) ∝ p(y | θ) =
n∏

i=1

f (yi | θ).

For calculations, often more useful to work with the loglikelihood:

ℓ(θ | y) = logL(θ | y).



Recap of Frequentist Inference

▶ Model: y = (y1, . . . , yn)
iid∼ f (y | θ)

▶ Point Estimate: Maximum likelihood estimator (MLE)

θ̂ = θ̂ML = argmax
θ

ℓ(θ | y)

Question: Why should we use the MLE?

Answer: As n → ∞, we have θ̂ ∼ N (θ0,I−1(θ)), where θ0 is the
true parameter value and I(θ0) is the (expected) Fisher Information:

I(θ0) = −E

[
∂2

∂θ2
ℓ(θ0 | y)

]
= −

∫
∂2

∂θ2
ℓ(θ0 | y) · p(y | θ0) dy .

Theorem: Let θ̃ be any other estimator of θ. Then as n → ∞,
either θ̃ ̸→ θ0 and/or var(θ̃) ≥ var(θ̂).
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Recap of Frequentist Inference

▶ Model: y = (y1, . . . , yn)
iid∼ f (y | θ)

▶ MLE: θ̂ = argmaxθ ℓ(θ | y) ≈ N (θ,I−1(θ)),

I(θ) = −E
[

∂2

∂θ2 ℓ(θ | y)
]
.

▶ Confidence Interval:
▶ For each θi , want a pair of random variables L = L(y) and U = U(y)

such that Pr(L < θi < U) = 95%.
▶ Observed Fisher Information: Î = − ∂2

∂θ2 ℓ(θ̂ | y) n→ I(θ)
=⇒ θ̂i ≈ N (θi , [Î

−1
]ii )

=⇒ (approximate) 95% CI for θi :

θ̂i ± 1.96× se(θ̂i ), se(θ̂i ) =

√
[Î−1

]ii .



Recap of Frequentist Inference

▶ Model: y = (y1, . . . , yn)
iid∼ f (y | θ)

▶ MLE: θ̂ = argmaxθ ℓ(θ | y) ≈ N (θ,I−1(θ))

▶ Hypothesis Testing:

1. H0 : θ ∈ Θ0

2. Test statistic: T = T (y), large values of T are evidence against H0

3. p-value:
pv = Pr(T > Tobs | H0),

where Tobs = T (yobs) is calculated for current dataset, and
T = T (y) is for a new dataset.

▶ pv is probability of observing more evidence against H0 in new data
than current data, given that H0 is true.

▶ Typically p(T | H0) doesn’t exist, only p(T | θ). So often use an
asymptotic p-value

pv ≈ Pr(T > Tobs | θ = θ̂0), θ̂0 = argmax
θ∈Θ0

ℓ(θ | y).



Bayesian Inference

▶ Model: y = (y1, . . . , yn)
iid∼ f (y | θ)

▶ Likelihood: L(θ | y) ∝
∏n

i=1 f (yi | θ)
▶ Prior Distribution: π(θ)

▶ Posterior Distribution:

p(θ | y) = p(y | θ)π(θ)
p(y)

∝ L(θ | y) · π(θ)

IGNORE everything that doesn’t depend on θ.
I.e., if g(θ) ∝ p(θ | y), then

p(θ | y) = Z−1g(θ), Z =

∫
g(θ) dθ,

where Z is the normalizing constant.



Bayesian Inference

Model: y = (y1, . . . , yn)
iid∼ f (y | θ)

▶ Prior Distribution: π(θ)

▶ Posterior Distribution: p(θ | y) ∝ L(θ | y) · π(θ)
▶ Point Estimate: θ̂ = E [θ | y ]
▶ Interval Estimate: (L,U) such that Pr(L < θi < U | y) = 95%

No asymptotics, and conditioned on this y
▶ Hypothesis Testing: H0 : θ ∈ Θ0

Method 1: Simply calculate Pr(H0 | y) = Pr(θ ∈ Θ0 | y)!



Bayesian Inference

Model: y = (y1, . . . , yn)
iid∼ f (y | θ)

▶ Prior Distribution: π(θ)

▶ Posterior Distribution: p(θ | y) ∝ L(θ | y) · π(θ)
▶ Point Estimate: θ̂ = E [θ | y ]
▶ Interval Estimate: (L,U) such that Pr(L < θi < U | y) = 95%

No asymptotics, and conditioned on this y
▶ Hypothesis Testing: H0 : θ ∈ Θ0

Method 2: Given a test statistic T = T (y) ∼ f (T | θ), calculate
the posterior p-value

Pr(T > Tobs | yobs,H0) =

∫
θ∈Θ0

Pr(T > Tobs | θ) · p(θ | yobs,θ) dθ.

No asymptotics!



Example I

▶ Model: y = (y1, . . . , yn)
iid∼ N (µ, 1)

▶ Likelihood:

ℓ(µ | y) = −1

2

n∑
i=1

(yi − µ)2 = −n

2
(ȳ − µ)2,

where ȳ = 1
n

∑n
i=1 yi .

▶ Prior Specification: ALWAYS in this order:

1. What prior information do we have about µ?
2. What would make calculations simple?



Example I

▶ Model: y = (y1, . . . , yn)
iid∼ N (µ, 1)

▶ Likelihood: ℓ(µ | y) = − 1
2

∑n
i=1(yi − µ)2 = − n

2 (ȳ − µ)2

▶ Prior Specification: ALWAYS in this order:

1. What prior information do we have about µ?
2. What would make calculations simple?

In this case, a convenient choice is µ ∼ N (λ, τ 2), since

log p(µ | y) = ℓ(µ | y) + log π(µ)

= −n(ȳ − µ)2

2
− (λ− µ)2

2τ 2
= − (µ− Bλ− (1− B)ȳ)2

2(1− B)/n
,

where B = 1
n/(

1
n + τ 2) ∈ (0, 1) is called the shrinkage factor.

=⇒ µ | y ∼ N
(
Bλ+ (1− B)ȳ ,

1− B

n

)
.



Example I

▶ Model: y = (y1, . . . , yn)
iid∼ N (µ, 1)

▶ Likelihood: ℓ(µ | y) = − n
2 (ȳ − µ)2 Prior: µ ∼ N (λ, τ 2)

▶ Posterior: µ | y ∼ N
(
Bλ+ (1− B)ȳ , 1−B

n

)
, B = 1

n/(
1
n + τ 2).

1. log p(µ | y) = − 1
2
[n(ȳ − µ)2 + τ−2(λ− µ)2] = ℓ(µ | y , ỹ),

where ỹ consists of τ−2 additional data points with mean λ.
=⇒ Think of the prior as adding “fake” data to the data you
already have.

2. As τ → ∞, posterior converges to µ | y ∼ N (ȳ , 1
n
).

Gives exactly same point and interval estimate as Frequentist
inference.
But as τ → ∞ we have π(µ) ∝ 1 which is not a PDF...



General Case: Exponential Families

▶ Model: Y = (y1, . . . , yn)
iid∼ exp

{
T ′η −Ψ(η)

}
· h(y)

▶ Likelihood: ℓ(η | Y ) =
n∑

i=1

[
T ′

i η −Ψ(η)
]

= n
[
T̄ ′η −Ψ(η)

]
, T̄ =

1

n

n∑
i=1

Ti

▶ Conjugate Prior:
π(η) = g(η | T0, ν0)

∝ exp
{
ν0
[
T0

′η −Ψ(η)
]}

▶ Posterior Distribution: Has same form as the prior:

log p(η | Y ) = n
[
T̄ ′η −Ψ(η)

]
+ ν0

[
T0

′η −Ψ(η)
]

=⇒ η | Y ∼ g
(
η | n

n+ν0
T̄ + ν0

n+ν0
T0, n + ν0

)



General Case: Exponential Families

▶ Model: Y = (y1, . . . , yn)
iid∼ exp

{
T ′η −Ψ(η)

}
· h(y)

▶ Loglikelihood: ℓ(η | Y ) = n
[
T̄ ′η −Ψ(η)

]
, T̄ = 1

n

∑n
i=1 Ti

▶ Conjugate Prior: π(η) = g(η | T0, ν0) ∝ exp
{
ν0
[
T0

′η −Ψ(η)
]}

▶ Posterior Distribution:

η | Y ∼ g
(
η | n

n+ν0
T̄ + ν0

n+ν0
T0, n + ν0

)
▶ Interpretation: The conjugate prior family is not unique, but the

one above is proportional to the likelihood.
In this case, the prior is as if we’d observed ν0 additional
observations with average sufficient statistic T0.
An example of a conjugate prior not proportional to L(η | Y ):
mixture of above priors, i.e.,

π(η) = ρ · g(η | T1, ν1) + (1− ρ) · g(η | T2, ν2).



General Case: Exponential Families

▶ Model: Y = (y1, . . . , yn)
iid∼ exp

{
T ′η −Ψ(η)

}
· h(y)

▶ Loglikelihood: ℓ(η | Y ) = n
[
T̄ ′η −Ψ(η)

]
, T̄ = 1

n

∑n
i=1 Ti

▶ Conjugate Prior: π(η) = g(η | T0, ν0) ∝ exp
{
ν0
[
T0

′η −Ψ(η)
]}

▶ Posterior Distribution:

η | Y ∼ g
(
η | n

n+ν0
T̄ + ν0

n+ν0
T0, n + ν0

)
▶ Improper Priors: As ν0 → 0 we get π(η) ∝ 1, and thus

p(η | Y ) ∝ L(η | Y ).
However, π(η) ∝ 1 typically doesn’t integrate to 1, so are we allowed
to use this as a prior?
OK as long as

∫
L(η | Y )π(η) dη < ∞. This is because the

posterior is

p(η | Y ) =
L(η | Y )π(η)∫
L(η | y)π(η) dη

,

so get a valid distribution as long as denominator is finite.



Example I (Continued)

▶ Model: y = (y1, . . . , yn)
iid∼ N (µ, 1)

▶ Likelihood: ℓ(µ | y) = − n
2 (ȳ − µ)2 Prior: µ ∼ N (λ, τ 2)

▶ Posterior:
µ | y ∼ N

(
Bλ+ (1− B)ȳ , 1−B

n

)
, B = ( 1n )/(

1
n + τ 2)

▶ Comparison: µ̂ML = ȳ vs. µ̂B = E [µ | y ] = Bλ+ (1− B)ȳ .
▶ Metric: mean square error

MSE(µ̂) = E [(µ̂− µ)2] = (E [µ̂]− µ︸ ︷︷ ︸
Bias(µ̂)

)2 + var(µ̂)

▶ MSE(µ̂ML) = 1/n, MSE(µ̂B) = B2(λ− µ)2 + (1− B)2/n.
▶ Plot MSE(µ̂B)/MSE(µ̂ML) as a function of ∆ = n1/2|λ− µ| and B.



Example I (Continued)

▶ Model: y = (y1, . . . , yn)
iid∼ N (µ, 1)

▶ Likelihood: ℓ(µ | y) = − n
2 (ȳ − µ)2 Prior: µ ∼ N (λ, τ 2)

▶ Posterior:
µ | y ∼ N

(
Bλ+ (1− B)ȳ , 1−B

n

)
, B = ( 1n )/(

1
n + τ 2)

MSE(µ̂B) MSE(µ̂ML)

∆ = n ⋅ λ − µ

B
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Example I

Summary:

▶ Many statistical models have conjugate priors, which one can think
of as adding fake data to the data we have already observed.

▶ Priors don’t need to integrate to 1, as long as the posterior does.
This can be useful to avoid thinking too much about what prior to
use, i.e., simply use π(θ) ∝ 1.



Example II

▶ Model: y = (y1, . . . , yn)
iid∼ N (0, σ2)

▶ Likelihood:

L(σ2 | y) ∝ exp

{
−n

2
log σ2 − S2/2

σ2

}
, S =

n∑
i=1

y2
i .

▶ Conjugate Prior:

σ2 ∼ Inv-Gamma(α, β)

⇐⇒ π(σ2) ∝ exp

{
−(α+ 1) log σ2 − β

σ2

}
▶ Posterior Distribution:

σ2 | y ∼ Inv-Gamma
(
n
2 + α, S

2 + β
)



Example II

▶ Model: y = (y1, . . . , yn)
iid∼ N (0, σ2)

▶ Likelihood: ℓ(σ2 | y) = − 1
2

(
S/σ2 + n log σ2

)
, S =

∑n
i=1 y

2
i .

▶ Conjugate Prior:
σ2 ∼ Inv-Gamma(α, β) ⇐⇒ π(σ2) ∝ (1/σ2)α+1e−β/σ2

▶ Posterior Distribution:
σ2 | y ∼ Inv-Gamma

(
n
2 + α, S

2 + β
)

=⇒ σ̂2
B = E [σ2 | y ] =

S
2 + β

n
2 + α− 1

Prior (α, β) π(σ2) σ̂2
B

Flat (−1, 0) ∝ 1 S/(n − 4)
MLE-matching (1, 0) ∝ 1/σ4 S/n (= σ̂2

ML)



Example II

▶ Model: y = (y1, . . . , yn)
iid∼ N (0, σ2)

▶ Likelihood: ℓ(σ2 | y) = − 1
2

(
S/σ2 + n log σ2

)
, S =

∑n
i=1 y

2
i .

▶ Maximum Likelihood Estimate:
▶ For variance: σ2: σ̂2

ML = S/n
▶ For precision: τ 2 = 1/σ2: τ̂ 2

ML = n/S = 1/σ̂2
ML.

▶ Invariance Principle: For given ℓ(θ | y), if η = g(θ) and g is a
bijection, then can reparametrize the model via
ℓ(η | y) = ℓ(θ = g−1(η) | y), such that

max
η

ℓ(η | y) ≤ ℓ(θ = θ̂ML | y) = ℓ(η = g(θ̂ML) | y)

=⇒ η̂ML = g(θ̂ML).



Example II

▶ Model: y = (y1, . . . , yn)
iid∼ N (0, σ2)

▶ Conjugate Prior:
σ2 ∼ Inv-Gamma(α, β) ⇐⇒ π(σ2) ∝ (1/σ2)α+1e−β/σ2

▶ Posterior Distribution: σ2 | y ∼ Inv-Gamma
(
n
2 + α, S

2 + β
)

▶ Bayesian Estimate:
▶ For variance: σ2: (MLE is σ̂2

ML = S/n)
σ̂2
B = E [σ2 | y ] = ( S

2
+ β)/( n

2
+ α− 1)

=⇒ MLE-matching prior is π(σ2) ∝ 1/σ4

▶ For precision: τ 2 = 1/σ2: (MLE is τ̂ 2
ML = n/S)

τ 2 | y ∼ Gamma( n
2
+ α, S

2
+ β) =⇒ τ̂ 2

B = E [τ 2 | y ] =
n
2
+ α

S
2
+ β

=⇒ MLE-matching prior is: π(σ2) ∝ 1/σ2



Example II

Summary:

▶ Bayesian inference cannot be made invariant to the choice of prior.
▶ Change-of-Variables Formula: If π(θ) = f (θ) and η = g(θ) is a

bijection, then prior on η scale is

π(η) = f (g−1(η))×
∣∣∣∣ ddη g−1(η)

∣∣∣∣ .
=⇒ No “completely uninformative” prior for every parameter
transformation, since

π(θ) ∝ 1 =⇒ π(η) ∝
∣∣∣∣ ddη g−1(η)

∣∣∣∣ .



Example II

Summary:

▶ Bayesian inference cannot be made invariant to the choice of prior.
No “completely uninformative” prior for every parameter
transformation: if η = g(θ), then

π(θ) ∝ 1 =⇒ π(η) ∝
∣∣∣∣ d

dη
g−1(η)

∣∣∣∣ .
▶ Folk theorem: For any choice of prior π(θ) and fixed sample size n,

there exists some η = g(θ) such that η̂B = E [η | y ] is arbitrarily far
from η̂ML.

▶ Asymptotic theory: For any choice of prior π(θ) > 0 for all
θ ∈ Rp, as n → ∞ we have

θ | y → N (θ̂ML, Î).

=⇒ Bayesian and Frequentist inference are asymptotically
equivalent.



Decision Theory

▶ Goal: Compare various estimators θ̂k = θ̂k(y) of θ.
▶ Loss Function: L(θ̂,θ) ≥ 0 and L(θ̂,θ) = 0 ⇐⇒ θ̂ = θ. (Most

common one is L(θ̂,θ) = ||θ̂ − θ||2.)

▶ Risk: Expected loss as a function of true parameter θ:

R(θ̂ | θ) = E [L(θ̂,θ) | θ] =
∫

L(θ̂(y),θ) · p(y | θ) dy .

▶ Admissibility: θ̂1 is an inadmissible estimator if exists θ̂2 such that

R(θ̂2 | θ) ⪯ R(θ̂1 | θ) ∀ θ,

i.e., the risk of θ̂2 is never greater than that of θ̂1, and for at least
one value of θ it is lower. Otherwise, θ̂1 is admissible, i.e., isn’t
strictly dominated by another estimator.



Decision Theory

▶ Goal: Compare various estimators θ̂k = θ̂k(y) of θ.
▶ Loss Function: L(θ̂,θ) ≥ 0 and L(θ̂,θ) = 0 ⇐⇒ θ̂ = θ.

▶ Risk: R(θ̂ | θ) = E [L(θ̂,θ) | θ] =
∫
L(θ̂(y),θ) · p(y | θ) dy .

▶ Admissibility: θ̂1 is inadmissible if exists θ̂2 such that
R(θ̂2,θ) ⪯ R(θ̂1,θ).

▶ Bayes Rule: For given prior π(θ), the Bayes rule minimizes the
expected loss conditioned on the data:

θ̂BR = argmin
θ̃

E [L(θ̃,θ) | y ] = argmin
θ̃

∫
L(θ̃,θ) · p(θ | y) dθ.

▶ Point Estimate: For L(θ̂,θ) = ∥θ̂ − θ∥2 we have θ̂BR = E [θ | y ].
▶ Credible Interval: For τ = g(θ) and

L(τ̂ , τ) = (τ̂ − τ) · (α− δ{τ̂ − τ < 0}),

we have τ̂BR = F−1
τ |y (α | y), the α-level quantile of p(τ | y).



Decision Theory

▶ Goal: Compare various estimators θ̂k = θ̂k(y) of θ.
▶ Loss Function: L(θ̂,θ) ≥ 0 and L(θ̂,θ) = 0 ⇐⇒ θ̂ = θ.

▶ Risk: R(θ̂ | θ) = E [L(θ̂,θ) | θ] =
∫
L(θ̂(y),θ) · p(y | θ) dy .

▶ Admissibility: θ̂1 is inadmissible if exists θ̂2 such that
R(θ̂2,θ) ⪯ R(θ̂1,θ).

▶ Bayes Rule: θ̂BR = argminθ̃ E [L(θ̃,θ) | y ].
▶ Theorem: If π(θ) is proper, then θ̂BR is admissible. Moreover, any

admissible θ̂ is the Bayes rule for some proper or improper prior.
(However, not all Bayes rules from improper priors are admissible.)

=⇒ Only estimators which have a Bayesian interpretation can be
admissible.



Bayesian vs. Frequentist?

Some bad words:

▶ Bayesian inference is subjective

▶ Frequentist inference is ad-hoc

Don’t be Bayesian or Frequentist – use Bayesian or Frequentist methods
depending on the problem.

“Strive for simplicity. Stubbornly resist complexity in your approach.”
– Rob Tibshirani, inventor of LASSO



Example: When NOT to Use Bayes

▶ Model: y = (y1, . . . , y100)
iid∼ F (y).

▶ Goal: Estimate τ = F−1(.25), the 25% quantile of F (y).

▶ Frequentist Inference:
▶ Point Estimate: τ̂ = y(25), the corresponding order statistic.
▶ Interval Estimate: For any F (y) and 0 < p < 1, let

X = #{yi : yi < F−1(p)}. Then X ∼ Binomial(100, p), and

Pr(y(a) < F−1(p) < y(b)) =
b−1∑
i=a

(
100

i

)
pi (1− p)100−i .

=⇒ 95% CI: (y(17), y(34))

▶ Bayesian Point/Interval Estimates??



Example: When to Use Bayes

▶ Data: K = 8 schools and their test scores:
School 1 2 3 4 5 6 7 8

x 28 8 -3 7 -1 1 18 12
σ 15 10 16 11 9 11 10 18

▶ Goal: Rank the schools based on µi , the “true” score for each
school.

▶ Parameter Inference: Consider the following two extremes:

1. Individual means: µ̂i = xi .
2. Common mean: µ̂i ≡

∑K
j=1 wj · xj , wj = σ−2

j /(
∑K

k=1 σ
−2
k ).

(This is the MLE of model xi
ind∼ N (µ, σ2

i ).)

Neither are good for ranking (1 has high uncertainty, 2 makes all schools

equal).
A third alternative is to compromise between the two.



Example: When to Use Bayes

▶ Data: K = 8 schools and their test scores.

▶ Goal: Rank the schools based on µi , the “true” score for each
school.

▶ Parameter Inference: Consider the following hierarchical model:

xi | µi
ind∼ N (µi , σ

2
i ), µi

iid∼ N (λ, τ 2).

The parameters µ = (µ1, . . . , µK ) are called random effects.
▶ Posterior distribution of µi (though nothing Bayesian yet):

µi | x ind∼ N
(
Biλ+(1−Bi )xi , (1−Bi )σ

2
i

)
, Bi = σ−2

i /(σ−2
i +τ−2).

Thus we have the two extremes:

1. Individual means: τ = ∞ =⇒ E [µi | x ] = xi
2. Common mean: τ = 0 =⇒ E [µi | x ] = λ

Moreover, for any 0 < τ < ∞ we can compromise between the two
(i.e., partial pooling).



Hierarchical Modeling: Frequentist Approach

▶ Hierarchical Model: xi | µi
ind∼ N (µi , σ

2
i ), µi

iid∼ N (λ, τ 2).

▶ Marginal Data Distribution: xi
ind∼ N (λ, σ2

i + τ 2).

▶ Profile Likelihood:

λ̂τ = argmax
λ

ℓ(λ, τ | x) =
∑K

i=1 xi/(σ
2
i + τ 2)∑K

j=1 1/(σ
2
j + τ 2)

ℓprof(τ | x) = ℓ(λ = λ̂τ , τ | x) = −1

2

K∑
i=1

[
(xi − λ̂τ )

2

σ2
i + τ 2

+ log(σ2
i + τ 2)

]

=⇒ 2-d optimization reduces to 1-d.



Hierarchical Modeling: Frequentist Approach

▶ Hierarchical model: xi | µi
ind∼ N (µi , σ

2
i ), µi

iid∼ N (λ, τ 2)

▶ Profile likelihood:
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Hierarchical Modeling: Frequentist Approach

▶ Hierarchical model: xi | µi
ind∼ N (µi , σ

2
i ), µi

iid∼ N (λ, τ 2)

▶ Profile likelihood:

0 5 10 15 20

-3
3

-3
2

-3
1

-3
0

τ

ℓ p
ro
f(τ

 | 
x)

=⇒ τ̂ML = 0.

▶ Random-Effects Posterior:

µi | x
ind∼ N

(
Biλ+ (1− Bi )xi , (1− Bi )σ

2
i

)
, Bi = σ2

i /(σ
2
i + τ 2).

▶ Naive CI for µi :

[B̂i λ̂+ (1− B̂i )xi ]± 1.96× σi

√
1− B̂i , λ̂ = λ̂τ̂

B̂i = Bi (τ̂).▶ Ridiculous CI λ̂± 1.96× 0 with plugin τ̂ = τ̂ML.



Frequentist Approach

▶ Hierarchical model: xi | µi
ind∼ N (µi , σ

2
i ), µi

iid∼ N (λ, τ 2)

▶ Random-Effects Posterior:

µi | x
ind∼ N

(
Biλ+ (1− Bi )xi , (1− Bi )σ

2
i

)
, Bi = σ2

i /(σ
2
i + τ 2).

▶ Naive CI for µi : λ̂± 0
▶ Bootstrap CI for µi :

1. Generate bootstrap datasets x̃ (1), . . . , x̃ (M), x̃ (m) = (x̃
(m)
1 , . . . , x̃

(m)
K )

Parametric: x̃
(m)
i

ind∼ N (µi , σ
2
i ), µi

iid∼ N (λ̂, τ̂2)

Nonparametric: (x̃
(m)
i , σ̃

(m)
i ) resampled from (x1, σ1), . . . (xK , σK )

2. Calculate (λ̃(m), τ̃ (m)) = argmax ℓ(λ, τ | x (m)) and

µ̃
(m)
i = E [µi | x̃ (m), λ̃(m), τ̃ (m)] = B̃

(m)
i λ̃(m) + (1− B̃

(m)
i )x̃

(m)
i

3. Basic Bootstrap 95% CI: (µ̂i + L̃i , µ̂i + Ũi ), where (L̃i , Ũi ) are the the

2.5% and 97.5% sample quantiles of T̃
(1)
i , . . . , T̃

(M)
i , where

T̃
(m)
i = µ̂i − µ̃

(m)
i .



Frequentist Approach

▶ Hierarchical model: xi | µi
ind∼ N (µi , σ

2
i ), µi

iid∼ N (λ, τ 2)

▶ Bootstrap distribution of τ̃ :

Parametric Bootstrap
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Frequentist Approach

▶ Hierarchical model: xi | µi
ind∼ N (µi , σ

2
i ), µi

iid∼ N (λ, τ 2)

▶ Bootstrap distribution of µ̃i :
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Frequentist Approach

▶ Hierarchical model: xi | µi
ind∼ N (µi , σ

2
i ), µi

iid∼ N (λ, τ 2)

▶ Random-Effects Estimate:
▶ Naive, Bootstrap-P, Bootstrap-NP: µ̂i ≈ λ̂, i.e., full pooling
▶ Penalize ℓprof(τ | x) away from τ = 0? If so, how? (e.g., R package

lme4)

https://CRAN.R-project.org/package=lme4


Bayesian Approach

▶ Hierarchical model: xi | µi
ind∼ N (µi , σ

2
i ), µi

iid∼ N (λ, τ 2)

▶ Prior: If π(λ, τ) = π(τ), then

log p(λ, τ | x) = ℓ(λ, τ | x) + log π(τ)

= −1

2

K∑
i=1

[
(xi − λ)2

σ2
i + τ 2

+ log(σ2
i + τ 2)

]
+ log π(τ)

= −1

2

[
(λ− λτ )

2

σ2
τ

+ log(σ2
τ )

]
+ ℓprof(τ | x) + log(στ ) + log π(τ),

where λτ = λ̂τ (the conditional MLE) and σ2
τ = 1/

∑K
i=1(σ

2
i + τ 2)−1.

=⇒ λ | τ, x ∼ N (λτ , σ
2
τ )

log p(τ | x) = ℓprof(τ | x) + log(στ ) + log π(τ)

Bayesian equivalent of profile likelihood is integrating some
parameters out



Bayesian Approach

▶ Hierarchical model: xi | µi
ind∼ N (µi , σ

2
i ), µi

iid∼ N (λ, τ 2)

▶ Posterior: If π(λ, τ) = π(τ),

λ | τ, x ∼ N (λτ , σ
2
τ )

log p(τ | x) = ℓprof(τ | x) + log(στ ) + log π(τ)

▶ Possible priors:

1. π(τ) ∝ 1
2. π(τ 2) ∝ 1 =⇒ π(τ) ∝ τ



Bayesian Approach

▶ Hierarchical model: xi | µi
ind∼ N (µi , σ

2
i ), µi

iid∼ N (λ, τ 2)

▶ Posterior: If π(λ, τ) = π(τ),

λ | τ, x ∼ N (λτ , σ
2
τ )

log p(τ | x) = ℓprof(τ | x) + log(στ ) + log π(τ)
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Bayesian Approach

▶ Hierarchical model: xi | µi
ind∼ N (µi , σ

2
i ), µi

iid∼ N (λ, τ 2)

▶ Prior: π(λ, τ 2) ∝ 1

▶ Inference for µ:

p(µ | x) =
∫

p(µ | λ, τ, x)︸ ︷︷ ︸
N (Bλ+(1−B)x,(1−B)σ2)

× p(λ | τ, x)︸ ︷︷ ︸
N (λτ ,σ2

τ )

× p(τ | x) dλdτ

Monte Carlo method:

1. τ (m) iid∼ p(τ | x) (1-d grid sampling)

2. λ(m) | τ (1:M) ind∼ N (λτ (m) , σ2
τ (m))

3. µ(m) | λ(1:M), τ (1:M) ind∼ N (B(m)λ(m)+(1−B(m))x , diag{(1−B(m))σ2})
This produces M iid draws from p(µ, λ, τ | x).



Bayesian Approach

▶ Hierarchical model: xi | µi
ind∼ N (µi , σ

2
i ), µi

iid∼ N (λ, τ 2)

▶ Inference on µi :
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=⇒ Bayesian inference reports more of a difference between the
schools.



Quantity of Interest

▶ Hierarchical model: xi | µi
ind∼ N (µi , σ

2
i ), µi

iid∼ N (λ, τ 2)

▶ Inference on rankings:
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So Pr(School A = Rank 1 | x) = 25%,
Pr(School A = Rank 8 | x) = 8%, etc.



Quantity of Interest

▶ Hierarchical model: xi | µi
ind∼ N (µi , σ

2
i ), µi

iid∼ N (λ, τ 2)

▶ Inference on rankings:
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So Pr(Rank 1 = School A | x) = 25%,
Pr(Rank 1 = School E | x) = 8%, etc.


