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Example: Noncentral t-Distribution

Definition: Let z ~ N(p,0%) II  x ~x{,). Then
-z .
y= gt

has a Noncentral Student-t distribution, denoted y ~ t(,)(1, 7, 7).
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Noncentral t-Distribution

Definition: Let z ~ N(y,02) 1I x~ X%y)' Then

V4
y=—F—=+n~ty(womn).
Vx/v

Modeling: Allows very general specification of mean, variance, skewness and
kurtosis.

Non-Central t withn=0, o=1
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Parameter Inference

» Model: y; e tw) (1, o,m)
» Loglikelihood:

Up,o,m,v|y)=

n
> at(x = yi—n)/o, df = v, ncp = p, log = TRUE) — nlogo.
i=1

So for this problem we could get away with MLE, or
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Approximate Bayesian Inference

1. Unconstrain Parameters:

0= (n,omv) — P=(uA=logonw=logr).

(Approximation works much better on uncontrained scale.)
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Approximate Bayesian Inference

1. Unconstrain Parameters:

0= (n,omv) — P=(uA=logonw=logr).

(Approximation works much better on uncontrained scale.)

2. Posterior: p(¢ | y) < L(v | y) - w(v).
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Approximate Bayesian Inference

1. Unconstrain Parameters:

0= (n,omv) — P=(uA=logonw=logr).

(Approximation works much better on uncontrained scale.)

2. Posterior: p(¢ | y) < L(v | y) - w(v).
3. Normal Approximation: v | y ~ /\/({p, \7) where

2 -1

R o .
 =argmaxlogp(y|y), V=—|_—75logp(¥|y)
WP oY

(Also called the mode-quadrature approximation.)
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Approximate Bayesian Inference

1. Unconstrain Parameters:

0= (n,omv) — P=(uA=logonw=logr).

(Approximation works much better on uncontrained scale.)
2. Posterior: p(¢ | y) < L(v | y) - w(v).
3. Normal Approximation: v | y ~ /\/({p, \7) where

. . 2 . -1
¢ =argmaxlogp(yp | y), V=—|_—5logp(s|y)
" P

(Also called the mode-quadrature approximation.)
4. Monte Carlo Sampling:

oM KN, V).

i, 0 = (1™, exp(A™), n(™) exp(w™)).
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Parameter Inference

» Model: y; e twy (s 0,m)

» Loglikelihood:

Up,o,m,v|y)=

n
Zdt(x =y;,—n)/oc, df = v, ncp = pu, log = TRUE) — nlogo.
i=1

So for this problem we could get away with MLE, or Approximate Bayesian

Inference.
» However:
» Don’t have gradients for noncentral-t in TMB.
> What if we had y | x ~ t) (1, 0,x'B8)?
6/26
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Parameter Inference

> Model:
z z ifis./\f(u, o?)

+1, id
\Xi /v x;wx%y)

» Observed Data: y,,. =y = (y1,..-,¥n)

"
yi ~ t) (1, 0,7m) = yi =

» Missing Data: y, . = x = (x1, ..., Xn).
» Complete Data: y,,, = (y,x), with
iid
X~ X{)
ind 1/2
yil X N +/57, 72 %),

where v = pv/? and 7 = ov'/2.
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Parameter Inference
> Model: y; twy (1, o,m)

» Observed Data: y .. =y = (y1,---,¥n)

» Complete Data: y,,, = (¥, x),

with
iid
Xi % X vy =t
yi |X,' |,[1V N(n + ’Y/Xil/277-2/xi)7 = 0'1/1/2,

» Inference: Let 0 =

(777 ’Ya T27 V)'

» EM Algorithm: This would require taking expectations of x, x'/2, and log x
with respect to

Ly —n—x"'7?)? 1 x
p(xy,0)0<exp{ 5 =y |0gX+( 2) log x 5
X exp {Ax + Bx'? 4+ Clogx}7

a nonstandard distribution (don't even know its normalizing constant)
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Parameter Inference
> Model: y; i tow) (1, o,m)
» Observed Data: y .. =y = (y1,.-.,Yn)-
» Complete Data: y,,, = (y,x), with xi S X%u),
yilxi %N+ /5%, 7 ).
» Inference: Let 0 = (1,v,72,v).
> EM Algorithm: Requires expectations wrt  p(x |y, ) o exp { Ax + Bx!/2 + Clogx }.
» Bayesian Data Augmentation:

1. Implement an MCMC algorithm on the augmented posterior distribution
p(x,01y) o< p(y, x| 6) x m(6).

2. 1f (x, M), (x(M), 6M)) is an MCMC sample from p(x, 6 |y),

then the stationary distribution of (), ... 8 is p(8|y) = f p(x,0]y)dx.

(Works for exactly the same reason that the histogram of each random variable in any MCMC

converges to its marginal distribution.)
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Bayesian Data Augmentation

» Complete Data Likelihood: Don't cancel out anything involving @ or x:

(0] x,y) =logp(y,x|6)

L [0 —n =y 2P
=3 2% —(v—=1)logx; + x;
i=1
2
—n [T v + Iogr(y/Z)} .

» MCMC Algorithm: A block Metropolis-within-Gibbs sampler with the
following conditional updates:

» Update for (n,~,7): Canceling everything that doesn't depend on 3 = (n,7)
and 7, conditional likelihood ¢(83, 7| v, x, y) is that of a regression-like model

Vi e N(u/B,7%/x), ui = (1, 1/x,.1/2).

STAT 440/840 — CM 761: Computational Inference MCMC: Intermediate Examples 10/26



Bayesian Data Augmentation

» Complete Data Likelihood:

1 [0 —n—v )2
€(0|x,y):—7z ["—(V—l)logx,--l—x,-

—n

2 2 /x;
i=1 /%

24 v
logl | = .
2 ear (3)

» MCMC Algorithm: A block Metropolis-within-Gibbs sampler with:

» Update for (n,, 7): Canceling everything that doesn't depend on 8 = (n,~)
and 7, conditional likelihood ¢(8, 7| v, x, y) is that of a regression-like model

i BN @B, x), = (1,1/%7%),
» Conjugate Prior: Multivariate Normal Inverse-Gamma (mNIX) distribution

7% ~ Inv-Gamma(a, )

,72) ~ mNIX(\, E, «,
(B,77) r~ mNIX(, 2, @) Bl ~ N(A, - E).

— Exact Gibbs update for p(8, 72| v, x, y).
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Bayesian Data Augmentation

» Complete Data Likelihood:

1x [ == 22
f(0|x,y)=22[7%'(ul)logx,-+x,-
i=1

T2+V v
— logl | = .
| s (3)

» MCMC Algorithm: A block Metropolis-within-Gibbs sampler with:

» Update for v: Conditional likelihood is

v |n,v,7,x,y) = —nlogT(3v) — Jv x (n log(2) — >°7, Iogx;).

» Proposal Distribution: Conditional likelihood only depends on x; X X%V) which is
an Exponential Family = ¢(v|n,~, 7, x,y) is convex. Could do
Newton-Raphson to obtain a mode-quadrature normal approximation, but easier

to use a random walk proposal.

» Prior Distribution: Use logv ~ A(0,22). Basically uninformative, since
Pr(.005 < v < 170) =~ 99% (recall that t(=1) ~ Cauchy and t(, >30) & N(0,1)). Think

of this prior as regularizing inference (i.e., prevents v from floating off to 0 or co).
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Bayesian Data Augmentation
» Complete Data Likelihood:

T2+1/ v
- logl (= )] -
n|: 5 + log (2)

» MCMC Algorithm: A block Metropolis-within-Gibbs sampler with:

1 [ == %2
f(9|x7}'):—22[72/xl_’—(V—l)logXi-i-Xi
i=1

» Update for x: Conditional posterior is

p(x|y,0) x Hexp {A;x,- + B;x,-l/2 + Clogxi} .

i=1

» Proposal Distribution:

> Note that the x; are conditionally independent given everything else = exact Gibbs

sampler produces IID samples.
» Could do MWG, but this requires n tuning parameters (one for each x;).

> Note that mode of Ax + Bx!/2 4 Clog x has an analytic solution = tuning-free
MIID-within-Gibbs mode-quadrature proprosal.
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Proposal Distribution for p(x |y, 0)

w=-51,0-67,1n=--12,v=7.7 w-27,6=1,m=11,v=78 n=-4,0-18,1-63,v=7.1
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MCMC Code Checking

» Much more difficult than checking that # = argmax, £(8 | y), since
» MCMC is a random algorithm

» Don't know much about p(@|y) — that's why we're doing MCMC in the first
place!

» Recommendation: check code meticulously at every step.

Whenever | skip a step, 99% of time there will be an error and then | don't
know if it's in the last step or the one(s) | skipped. So | end up checking
every step anyway, except now it takes longer.
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Code Checking Strategies

1. Compare every simplified conditional likelihood £(6; | @_;,y) to the unsimplified
likelihood log p(y | 6).
Difference between the two for any value of 6; should be equal to a constant (possibly depending on y
and 6_;).

2. Compare every simplified posterior p(6;|0—;,y) to the unsimplified posterior
£(0]y) x 7(0).
Same as for loglikelihoods, but now checking Jacobians, i.e., if prior is w(8) but sampling is done on
¥ = g(0), then (v) = 7 (g7 (v)) | 58 ()]

3. Compare sampling from p(6;|6_j, y) to analytic conditional.
To get analytic conditional, recall that p(6; |6 _;,y) o< L(0 | y) x 7(0), to normalize evaluate 1-d

integral numerically.

4. Compare sampling from p(@|y) for given MCMC to sample from same posterior
with a different MCMC.

Both samplers should give same results.
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Code Checking for Noncentral t

Notation: 8 = (u,0,1,v), ¢ = (1,7 = w2, 7% = o®v,v) = (B,7%,v).

1. Simplified vs unsimplified likelihoods:

(n,v, 72| v, x,y), £(v|n,v,72, x,y), log p(x| ¢, y) can each be checked against

ply.x|e) = ply|x,n,v,7°) xp(x|v)
— S——

N (nyx—1/2,72x1) ~dx(2)
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Code Checking for Noncentral t

Notation: 0 = (u,0,1,v), ¢ = (1,7 = w2, 72 = o?v,v) = (B,72,v).

2. Conditional updates:
» p(v]...)and p(x;]| ...) compare to analytic 1D posterior & p(y, x| )7 ().
» Prior: log(v) ~ N(pw,02)  B,7%|v ~ mNIX(a,7, X, X)

As 0,,Z — 0o and a,y — 0 this becomes 7(¢p) ox 1/72
» To check p(B,72%|v, x,y) = mNIX(&, %, X, i) note that for any a € R?,
apg—al

72| v, x,y ~ Inv-Gamma(&, }Y),

Note that the second result integrates out 72.
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Code Checking for Noncentral t

Notation: 0 = (u,0,7,v), ¢ = (1,7 = w2, 72 = o?v,v) = (B,72,v).

3. Unconditional Updates:
» Compare to an MIID sampler with mode-quadrature normal proposals for
p(81y) = p(y|6)m(0).
» p(y|0) available through R's built-in function dt with ncp parameter.

» 7(6) obtained from 7(¢) through Jacobian. That is, if f,(¢) is PDF of prior
on ¢, then PDF of prior on @ is fg(0) = f,(¢) x |[dp/dB)|, where

0o /2 0 0
de _ 0 0 20v 0 . ’ Py
do 1 0 0 O

0 v '2 o2 1
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Code Checking for Noncentral t

Notation: 8 = (u,0,1,v), ¢ = (1,7 = w2, 7% = o®v,v) = (B,7%,v).
4. Compare to different MCMC on same posterior:

» Since this is a 4-parameter problem, probably easiest to compare to MIID

sampling with normal mode-quadrature proposals.

» For more complicated problems, perhaps easier to use a general-purpose
MCMC, which will be slow but easy to program.

» Stan: The state-of-the-art in general-purpose MCMC.

» Stan is a programming language very similar to R to which you input an arbitrary
log p(0 | y).

» Implements and compiles in C++ a very effective MCMC algorithm called Hybrid
Monte Carlo (HMC), but usually referred to as Hamiltonian Monte Carlo.
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Hamiltonian Monte Carlo (HMC)
» Problem: Sample from  x ~ p(x) x exp{Q(x)}, x=(X1,...,Xd)-
» Hamiltonian Dynamics:
» System Variables:
> Position Variables x = (x1,. . ., xq)-
> Momentum Variables v = (vi, ..., vy).

» Phase-Space Variables T = (x, v).

3\%

d

» Hamiltonian Function: H(x,v) = Z

» Equations of Motion: Consider the function I's = [(t) defined by the system of
ordinary differential equations (ODEs) and initial conditions

(t) _ V:(t) jTV;(t) — a(il Q(Xt)7 I = (Xo7 Vo).

Thus we have some function W : R?? x R — R?? such that W(lg, t) = T..
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Hamiltonian Monte Carlo (HMC)
» Problem: Sample from  x ~ p(x) x exp{Q(x)}, X =(X1,...,Xd)-
» Hamiltonian Dynamics:
» System Variables: x (position), v (momentum), I = (x, v) (phase-space).

1 V2

d
» Hamiltonian Function: =-Q = —.
amiltonian Function H(x, v) (x)+ 3 Zl -

» Equations of Motion: Define 't = W([lg, t) as solution to system of ODEs

d vi(t) d 8

g (== 3tV = 52

Q(X,_»)7 ro = (Xo,Vo).

» Conservation of Energy: If [, = W([, t), then H(xo, vo) = H(x¢, vt).
» Preservation of Volume: Change of variables 'y — I'; has Jacobian

ar
dlp

d
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Hamiltonian Monte Carlo (HMC)

» Problem: Sample from  x ~ p(x) x exp{Q2(x)}, X =(x1,...,Xq)-
» Hamiltonian Dynamics:
1 J VP
> . . . . _ - Vi
Hamiltonian Function: H(x,v) Q(x) + 3 Zl ot

» Equations of Motion: Define ', = W(Ily, t) as solution to system of ODEs

d op_ vi(t) d 9 _
EX'(t) ot 9 vi(t) = x Q(x¢), Fo = (xo0, vo).

» (ldealized) HMC Proposal: Given xc, and L > 0:
1. Let Mo = (Xcurr, Vo), where v, e N(0, m;).
2. Let Xprop = X1, where (x1, v, ) = = W(T, L)

—> Metropolis-Hastings acceptance rate:
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Hamiltonian Monte Carlo (HMC)

» Problem: Sample from  x ~ p(x) x exp{Q2(x)}, X =(x1,...,Xq)-
» Hamiltonian Dynamics:
1 J VP
> . . . . _ - Vi
Hamiltonian Function: H(x,v) Q(x) + 3 Zl ot

» Equations of Motion: Define ', = W(Ily, t) as solution to system of ODEs

d op_ vi(t) d 9 _
EX'(t) ot 9 vi(t) = x Q(x¢), Fo = (xo0, vo).

» (ldealized) HMC Proposal: Given xc, and L > 0:
1. Let Mo = (Xcurr, Vo), where v, e N(0, m;).
2. Let Xprop = X1, where (x1, v, ) = = W(T, L)

= Metropolis-Hastings acceptance rate: 100%!!!
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Hamiltonian Monte Carlo (HMC)

»> Problem: Sample from  x ~ p(x) o< exp{Q(x)}, X =(x1,...,Xd)-

> (ldealized) HMC Proposal: Given xc, and L > 0:
1. Let To = (Xcur, Vo), where vo; < N(0, my).
2. Let Xprop = X1, where (x1, v, ) = = W(To, L)
— Metropolis-Hastings acceptance rate: 100%!!!
» In Practice:
» Can't solve ODE exactly: discretize = acceptance rate # 1.
P Lots of tuning parameters: ODE solver step size, total time t, mass m.

» Gradients: To solve ODE need (%Q(x), which is a lot of programming effort.
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Hamiltonian Monte Carlo (HMC)

» Problem: Sample from  x ~ p(x) x exp{Q(x)}, x=(x1,...,Xd).

> (ldealized) HMC Proposal: Given x, and L > 0:
1. Let o = (Xcurr, Vo), where v e N(0, m;).
2. Let Xprop = X1, Where (x1,v,) = = W(T, L)

— Metropolis-Hastings acceptance rate: 100%!!!

» In Practice:
» Can't solve ODE exactly: discretize = acceptance rate # 1.
P Lots of tuning parameters: ODE solver step size, total time t, mass m.

» Gradients: To solve ODE need %Q(x), which is a lot of programming effort.

All of this is done automatically by Stan :)

24 /26
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Stan Examples
> Examples:

1. Curved Mean-Variance Normal: o ~ p(o|y), where
iid
UNX?7)7 yf|UNN(U702)'
2. Banana distribution: x ~ p(x|o,y), where x = (x1, x2) and
(v —x-x)? | (x1—x)
p(x|o,y) o< exp { { 57 + 5

> Key Concepts:

» Testing Stan code: Generic MCMC, so only need to check log-posterior is
correct. Do this with rstan package functions log_prob and

expose_stan_functions.

» Testing other code: Stan is relatively easy to program, so use it to compare to
sampling from a more specific MCMC algorithm for a particular problem (can

often do better than any generic algorithm at expense of human hours).
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https://CRAN.R-project.org/package=rstan

Stan Resources

» Instructions for installing Stan in R can be found here. Follow these to the
letter or Stan probably won't work properly!

» Full Stan documentation (tons of examples) and rstan package vignette (for

operating Stan from within R) can be found here.

» Detailed explanation of HMC algorithm, its strengths and pitfalls, and many
of its variants can be found here.
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https://github.com/stan-dev/rstan/wiki/RStan-Getting-Started
http://mc-stan.org/interfaces/rstan
https://arxiv.org/pdf/1206.1901.pdf

