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Example: Noncentral t-Distribution

Definition: Let z ∼ N (µ, σ2) q x ∼ χ2(ν). Then

y = z√
x/ν

+ η

has a Noncentral Student-t distribution, denoted y ∼ t(ν)(µ, σ, η).
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Noncentral t-Distribution
Definition: Let z ∼ N (µ, σ2) q x ∼ χ2(ν). Then

y = z√
x/ν

+ η ∼ t(ν)(µ, σ, η).

Modeling: Allows very general specification of mean, variance, skewness and
kurtosis.
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Parameter Inference

I Model: yi
iid∼ t(ν)(µ, σ, η)

I Loglikelihood:

`(µ, σ, η, ν | y) =
n∑

i=1
dt(x = yi − η)/σ, df = ν, ncp = µ, log = TRUE)− n log σ.

So for this problem we could get away with MLE, or
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Approximate Bayesian Inference

1. Unconstrain Parameters:

θ = (µ, σ, η, ν) → ψ = (µ, λ = log σ, η, ω = log ν).

(Approximation works much better on uncontrained scale.)

2. Posterior: p(ψ | y) ∝ L(ψ | y) · π(ψ).

3. Normal Approximation: ψ | y ≈ N (ψ̂, V̂ ), where

ψ̂ = arg max
ψ

log p(ψ | y), V̂ = −
[
∂2

∂ψ2 log p(ψ̂ | y)
]−1

.

(Also called the mode-quadrature approximation.)

4. Monte Carlo Sampling:

i. ψ(1), . . . ,ψ(M) iid∼ N (ψ̂, V̂ ).

ii. θ(m) =
(
µ(m), exp(λ(m)), η(m), exp(ω(m))

)
.
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Parameter Inference

I Model: yi
iid∼ t(ν)(µ, σ, η)

I Loglikelihood:

`(µ, σ, η, ν | y) =
n∑

i=1
dt(x = yi − η)/σ, df = ν, ncp = µ, log = TRUE)− n log σ.

So for this problem we could get away with MLE, or Approximate Bayesian
Inference.

I However:

I Don’t have gradients for noncentral-t in TMB.

I What if we had y | x ∼ t(ν)(µ, σ, x ′β)?
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Parameter Inference

I Model:

yi
iid∼ t(ν)(µ, σ, η) ⇐⇒ yi = zi√

xi/ν
+ η,

zi
iid∼ N (µ, σ2)

xi
iid∼ χ2(ν)

I Observed Data: yobs = y = (y1, . . . , yn).

I Missing Data: ymiss = x = (x1, . . . , xn).

I Complete Data: ycomp = (y , x), with

xi
iid∼ χ2(ν)

yi | xi
ind∼ N (η + γ/x1/2

i , τ 2/xi ),

where γ = µν1/2 and τ = σν1/2.
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Parameter Inference
I Model: yi

iid∼ t(ν)(µ, σ, η)

I Observed Data: yobs = y = (y1, . . . , yn).

I Complete Data: ycomp = (y , x), with

xi
iid∼ χ2(ν)

yi | xi
ind∼ N (η + γ/x1/2

i , τ 2/xi ),

γ = µν1/2,

τ = σν1/2.

I Inference: Let θ = (η, γ, τ 2, ν).

I EM Algorithm: This would require taking expectations of x , x1/2, and log x
with respect to

p(x | y , θ) ∝ exp
{
−1
2

(y − η − γx−1/2)2

τ 2/x + 1
2 log x + ( ν−22 ) log x − x

2

}
∝ exp

{
Ax + Bx1/2 + C log x

}
,

a nonstandard distribution (don’t even know its normalizing constant).
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Parameter Inference
I Model: yi

iid∼ t(ν)(µ, σ, η)

I Observed Data: yobs = y = (y1, . . . , yn).

I Complete Data: ycomp = (y , x), with xi
iid∼ χ2(ν),

yi | xi
ind∼ N (η + γ/x1/2

i , τ 2/xi ).

I Inference: Let θ = (η, γ, τ 2, ν).

I EM Algorithm: Requires expectations wrt p(x | y ,θ) ∝ exp
{

Ax + Bx1/2 + C log x
}
.

I Bayesian Data Augmentation:

1. Implement an MCMC algorithm on the augmented posterior distribution

p(x, θ | y) ∝ p(y , x | θ)× π(θ).

2. If (x(1), θ(1)), . . . , (x(M), θ(M)) is an MCMC sample from p(x, θ | y),

then the stationary distribution of θ(1), . . . , θ(M) is p(θ | y) =
∫

p(x, θ | y) dx.

(Works for exactly the same reason that the histogram of each random variable in any MCMC
converges to its marginal distribution.)
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Bayesian Data Augmentation

I Complete Data Likelihood: Don’t cancel out anything involving θ or x:

`(θ | x, y) = log p(y , x |θ)

= −1
2

n∑
i=1

[
(yi − η − γx−1/2i )2

τ 2/xi
− (ν − 1) log xi + xi

]

− n
[
τ 2 + ν

2 + log Γ(ν/2)
]
.

I MCMC Algorithm: A block Metropolis-within-Gibbs sampler with the
following conditional updates:

I Update for (η, γ, τ ): Canceling everything that doesn’t depend on β = (η, γ)
and τ , conditional likelihood `(β, τ | ν, x, y) is that of a regression-like model

yi
ind∼ N (u′iβ, τ 2/xi ), u i = (1, 1/x1/2

i ).
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Bayesian Data Augmentation
I Complete Data Likelihood:

`(θ | x, y) = −
1
2

n∑
i=1

[
(yi − η − γx−1/2i )2

τ2/xi
− (ν − 1) log xi + xi

]
−n
[
τ2 + ν

2
+ log Γ

(
ν

2

)]
.

I MCMC Algorithm: A block Metropolis-within-Gibbs sampler with:

I Update for (η, γ, τ ): Canceling everything that doesn’t depend on β = (η, γ)
and τ , conditional likelihood `(β, τ | ν, x, y) is that of a regression-like model

yi
ind∼ N (u′iβ, τ 2/xi ), u i = (1, 1/x1/2

i ).

I Conjugate Prior: Multivariate Normal Inverse-Gamma (mNIX) distribution

(β, τ 2) ∼ mNIX(λ,Σ, α, γ) ⇐⇒
τ 2 ∼ Inv-Gamma(α, γ)

β | τ 2 ∼ N (λ, τ 2 ·Σ).

=⇒ Exact Gibbs update for p(β, τ 2 | ν, x, y).
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Bayesian Data Augmentation
I Complete Data Likelihood:

`(θ | x, y) = −
1
2

n∑
i=1

[
(yi − η − γx−1/2i )2

τ2/xi
− (ν − 1) log xi + xi

]
−n
[
τ2 + ν

2
+ log Γ

(
ν

2

)]
.

I MCMC Algorithm: A block Metropolis-within-Gibbs sampler with:

I Update for ν: Conditional likelihood is

`(ν | η, γ, τ, x, y) = −n log Γ( 1
2ν)− 1

2ν ×
(
n log(2)−

∑n
i=1 log xi

)
.

I Proposal Distribution: Conditional likelihood only depends on xi
iid∼ χ2

(ν) which is
an Exponential Family =⇒ `(ν | η, γ, τ, x, y) is convex. Could do
Newton-Raphson to obtain a mode-quadrature normal approximation, but easier
to use a random walk proposal.

I Prior Distribution: Use log ν ∼ N (0, 22). Basically uninformative, since
Pr(.005 < ν < 170) ≈ 99% (recall that t(ν=1) ∼ Cauchy and t(ν≥30) ≈ N (0, 1)). Think
of this prior as regularizing inference (i.e., prevents ν from floating off to 0 or ∞).
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Bayesian Data Augmentation
I Complete Data Likelihood:

`(θ | x, y) = −
1
2

n∑
i=1

[
(yi − η − γx−1/2i )2

τ2/xi
− (ν − 1) log xi + xi

]
−n
[
τ2 + ν

2
+ log Γ

(
ν

2

)]
.

I MCMC Algorithm: A block Metropolis-within-Gibbs sampler with:

I Update for x: Conditional posterior is

p(x | y , θ) ∝
n∏

i=1

exp
{
Aixi + Bix1/2

i + C log xi

}
.

I Proposal Distribution:

I Note that the xi are conditionally independent given everything else =⇒ exact Gibbs
sampler produces IID samples.

I Could do MWG, but this requires n tuning parameters (one for each xi ).

I Note that mode of Ax + Bx1/2 + C log x has an analytic solution =⇒ tuning-free
MIID-within-Gibbs mode-quadrature proprosal.
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Proposal Distribution for p(x | y, θ)
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MCMC Code Checking

I Much more difficult than checking that θ̂ = arg maxθ `(θ | y), since

I MCMC is a random algorithm

I Don’t know much about p(θ | y) – that’s why we’re doing MCMC in the first
place!

I Recommendation: check code meticulously at every step.

Whenever I skip a step, 99% of time there will be an error and then I don’t
know if it’s in the last step or the one(s) I skipped. So I end up checking
every step anyway, except now it takes longer.
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Code Checking Strategies

1. Compare every simplified conditional likelihood `(θj | θ−j , y) to the unsimplified
likelihood log p(y | θ).
Difference between the two for any value of θj should be equal to a constant (possibly depending on y

and θ−j ).

2. Compare every simplified posterior p(θj | θ−j , y) to the unsimplified posterior
L(θ | y)× π(θ).
Same as for loglikelihoods, but now checking Jacobians, i.e., if prior is π(θ) but sampling is done on

ψ = g(θ), then π(ψ) = π
(

g−1(ψ)
)∣∣ ∂
∂ψ g−1(ψ)

∣∣.
3. Compare sampling from p(θj | θ−j , y) to analytic conditional.

To get analytic conditional, recall that p(θj | θ−j , y) ∝ L(θ | y)× π(θ), to normalize evaluate 1-d

integral numerically.

4. Compare sampling from p(θ | y) for given MCMC to sample from same posterior
with a different MCMC.
Both samplers should give same results.
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Code Checking for Noncentral t

Notation: θ = (µ, σ, η, ν), ϕ = (η, γ = µν1/2, τ 2 = σ2ν, ν) = (β, τ 2, ν).

1. Simplified vs unsimplified likelihoods:

`(η, γ, τ 2 | ν, x, y), `(ν | η, γ, τ 2, x, y), log p(x |ϕ, y) can each be checked against

p(y , x |ϕ) = p(y | x, η, γ, τ 2)︸ ︷︷ ︸
ind∼N (η+γx−1/2,τ 2x−1)

× p(x | ν)︸ ︷︷ ︸
iid∼χ2

(ν)
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Code Checking for Noncentral t

Notation: θ = (µ, σ, η, ν), ϕ = (η, γ = µν1/2, τ 2 = σ2ν, ν) = (β, τ 2, ν).

2. Conditional updates:

I p(ν | . . .) and p(xi | . . .) compare to analytic 1D posterior ∝ p(y , x |ϕ)π(ϕ).

I Prior: log(ν) ∼ N (µν , σ2ν) β, τ 2 | ν ∼ mNIX(α, γ,λ,Σ)

As σν ,Σ→∞ and α, γ → 0 this becomes π(ϕ) ∝ 1/τ 2

I To check p(β, τ 2 | ν, x, y) = mNIX(α̂, γ̂, λ̂, Σ̂), note that for any a ∈ R2,

τ 2 | ν, x, y ∼ Inv-Gamma(α̂, ,̂γ), a′β − a′λ̂√
γ̂/α̂ · a′Σ̂a

| ν, x, y ∼ t(2α̂)

Note that the second result integrates out τ 2.
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Code Checking for Noncentral t

Notation: θ = (µ, σ, η, ν), ϕ = (η, γ = µν1/2, τ 2 = σ2ν, ν) = (β, τ 2, ν).

3. Unconditional Updates:

I Compare to an MIID sampler with mode-quadrature normal proposals for
p(θ | y) = p(y |θ)π(θ).

I p(y |θ) available through R’s built-in function dt with ncp parameter.

I π(θ) obtained from π(ϕ) through Jacobian. That is, if fϕ(ϕ) is PDF of prior
on ϕ, then PDF of prior on θ is fθ(θ) = fϕ(ϕ)× |dϕ/ dθ|, where

dϕ
dθ =


0 ν1/2 0 0
0 0 2σν 0
1 0 0 0
0 1

2µν
−1/2 σ2 1

 =⇒
∣∣∣∣dϕdθ

∣∣∣∣ = 2σν3/2.
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Code Checking for Noncentral t

Notation: θ = (µ, σ, η, ν), ϕ = (η, γ = µν1/2, τ 2 = σ2ν, ν) = (β, τ 2, ν).

4. Compare to different MCMC on same posterior:

I Since this is a 4-parameter problem, probably easiest to compare to MIID
sampling with normal mode-quadrature proposals.

I For more complicated problems, perhaps easier to use a general-purpose
MCMC, which will be slow but easy to program.

I Stan: The state-of-the-art in general-purpose MCMC.

I Stan is a programming language very similar to R to which you input an arbitrary
log p(θ | y).

I Implements and compiles in C++ a very effective MCMC algorithm called Hybrid
Monte Carlo (HMC), but usually referred to as Hamiltonian Monte Carlo.
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Hamiltonian Monte Carlo (HMC)
I Problem: Sample from x ∼ p(x) ∝ exp{Ω(x)}, x = (x1, . . . , xd ).

I Hamiltonian Dynamics:
I System Variables:

I Position Variables x = (x1, . . . , xd ).

I Momentum Variables v = (v1, . . . , vd ).

I Phase-Space Variables Γ = (x, v).

I Hamiltonian Function: H(x, v) = −Ω(x) + 1
2

d∑
i=1

v 2
i

mi
.

I Equations of Motion: Consider the function Γt = Γ(t) defined by the system of
ordinary differential equations (ODEs) and initial conditions

d
dt xi (t) = vi (t)

mi
,

d
dt vi (t) = ∂

∂xi
Ω(x t), Γ0 = (x0, v0).

Thus we have some function Ψ : R2d × R→ R2d such that Ψ(Γ0, t) = Γt .
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Hamiltonian Monte Carlo (HMC)
I Problem: Sample from x ∼ p(x) ∝ exp{Ω(x)}, x = (x1, . . . , xd ).

I Hamiltonian Dynamics:

I System Variables: x (position), v (momentum), Γ = (x, v) (phase-space).

I Hamiltonian Function: H(x, v) = −Ω(x) + 1
2

d∑
i=1

v 2
i

mi
.

I Equations of Motion: Define Γt = Ψ(Γ0, t) as solution to system of ODEs

d
dt xi (t) = vi (t)

mi
,

d
dt vi (t) = ∂

∂xi
Ω(x t), Γ0 = (x0, v0).

I Conservation of Energy: If Γt = Ψ(Γ0, t), then H(x0, v0) = H(x t , v t).

I Preservation of Volume: Change of variables Γ0 → Γt has Jacobian∣∣∣dΓt

dΓ0

∣∣∣ =
∣∣∣ d
dΓ0

Ψ(Γ0, t)
∣∣∣ = 1.
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Hamiltonian Monte Carlo (HMC)

I Problem: Sample from x ∼ p(x) ∝ exp{Ω(x)}, x = (x1, . . . , xd ).

I Hamiltonian Dynamics:

I Hamiltonian Function: H(x, v) = −Ω(x) + 1
2

d∑
i=1

v 2
i

mi
.

I Equations of Motion: Define Γt = Ψ(Γ0, t) as solution to system of ODEs

d
dt xi (t) = vi (t)

mi
,

d
dt vi (t) = ∂

∂xi
Ω(x t), Γ0 = (x0, v0).

I (Idealized) HMC Proposal: Given xcurr and L > 0:

1. Let Γ0 = (xcurr, v0), where v0i
ind∼ N (0,mi ).

2. Let xprop = xL, where (xL, vL) = ΓL = Ψ(Γ0, L)

=⇒ Metropolis-Hastings acceptance rate:
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Hamiltonian Monte Carlo (HMC)

I Problem: Sample from x ∼ p(x) ∝ exp{Ω(x)}, x = (x1, . . . , xd ).

I Hamiltonian Dynamics:

I Hamiltonian Function: H(x, v) = −Ω(x) + 1
2

d∑
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v 2
i

mi
.

I Equations of Motion: Define Γt = Ψ(Γ0, t) as solution to system of ODEs

d
dt xi (t) = vi (t)

mi
,

d
dt vi (t) = ∂

∂xi
Ω(x t), Γ0 = (x0, v0).

I (Idealized) HMC Proposal: Given xcurr and L > 0:

1. Let Γ0 = (xcurr, v0), where v0i
ind∼ N (0,mi ).

2. Let xprop = xL, where (xL, vL) = ΓL = Ψ(Γ0, L)

=⇒ Metropolis-Hastings acceptance rate: 100%!!!
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Hamiltonian Monte Carlo (HMC)

I Problem: Sample from x ∼ p(x) ∝ exp{Ω(x)}, x = (x1, . . . , xd ).

I (Idealized) HMC Proposal: Given xcurr and L > 0:

1. Let Γ0 = (xcurr, v0), where v0i
ind∼ N (0,mi ).

2. Let xprop = xL, where (xL, vL) = ΓL = Ψ(Γ0, L)

=⇒ Metropolis-Hastings acceptance rate: 100%!!!

I In Practice:

I Can’t solve ODE exactly: discretize =⇒ acceptance rate 6= 1.

I Lots of tuning parameters: ODE solver step size, total time t, mass m.

I Gradients: To solve ODE need ∂
∂xi

Ω(x), which is a lot of programming effort.
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Hamiltonian Monte Carlo (HMC)

I Problem: Sample from x ∼ p(x) ∝ exp{Ω(x)}, x = (x1, . . . , xd ).

I (Idealized) HMC Proposal: Given xcurr and L > 0:

1. Let Γ0 = (xcurr, v0), where v0i
ind∼ N (0,mi ).

2. Let xprop = xL, where (xL, vL) = ΓL = Ψ(Γ0, L)

=⇒ Metropolis-Hastings acceptance rate: 100%!!!

I In Practice:

I Can’t solve ODE exactly: discretize =⇒ acceptance rate 6= 1.

I Lots of tuning parameters: ODE solver step size, total time t, mass m.

I Gradients: To solve ODE need ∂
∂xi

Ω(x), which is a lot of programming effort.

All of this is done automatically by Stan :)
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Stan Examples
I Examples:

1. Curved Mean-Variance Normal: σ ∼ p(σ | y), where

σ ∼ χ2
(7), yi |σ

iid∼ N (σ, σ2).

2. Banana distribution: x ∼ p(x |σ, y), where x = (x1, x2) and

p(x |σ, y) ∝ exp
{
−
[

(y − x1 · x2)2

2σ2 + (x1 − x2)2

2

]}
I Key Concepts:

I Testing Stan code: Generic MCMC, so only need to check log-posterior is
correct. Do this with rstan package functions log_prob and
expose_stan_functions.

I Testing other code: Stan is relatively easy to program, so use it to compare to
sampling from a more specific MCMC algorithm for a particular problem (can

often do better than any generic algorithm at expense of human hours).
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https://CRAN.R-project.org/package=rstan


Stan Resources

I Instructions for installing Stan in R can be found here. Follow these to the
letter or Stan probably won’t work properly!

I Full Stan documentation (tons of examples) and rstan package vignette (for
operating Stan from within R) can be found here.

I Detailed explanation of HMC algorithm, its strengths and pitfalls, and many
of its variants can be found here.
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https://github.com/stan-dev/rstan/wiki/RStan-Getting-Started
http://mc-stan.org/interfaces/rstan
https://arxiv.org/pdf/1206.1901.pdf

