version: 2020-02-11 · 11:21:29

Motivation

- ▶ Normal Regression Model: $y_i = x_i'\beta + \varepsilon_i$, $\varepsilon_i \stackrel{\text{iid}}{\sim} \mathcal{N}(0, \sigma^2)$.

 - Confidence Intervals: $\hat{\boldsymbol{\beta}} \sim \mathcal{N}(\boldsymbol{\beta}, \sigma^2 \boldsymbol{V}), \quad \boldsymbol{V} = (\boldsymbol{X}'\boldsymbol{X})^{-1}.$
 - \implies 95% CI for β_j is $\hat{\beta}_j \pm 1.96 \cdot \hat{\sigma} V_{ij}^{1/2}$, where $\hat{\sigma}$ is the MLE of σ .

(This is the Observed Fisher Information method, which is indistinguishable from the exact CI based on the $t_{(n-p)}$ distribution for n-p>30.)

Motivation

- ▶ Normal Regression Model: $y_i = \mathbf{x}_i'\beta + \varepsilon_i$, $\varepsilon_i \stackrel{\text{iid}}{\sim} \mathcal{N}(0, \sigma^2)$.
- ► Relaxed Assumptions: $y_i = \mathbf{x}_i' \boldsymbol{\beta} + \varepsilon_i$, $\varepsilon_i \stackrel{\text{iid}}{\sim} f(\varepsilon)$, $E[\varepsilon_i] = 0$, $\text{var}(\varepsilon_i) = 1$.
 - **Estimator:** Under Relaxed Assumptions, $\hat{\beta}$ is the Best Linear Unbiased Estimator (BLUE), in the sense that for any $\tilde{\beta} = Ay$ with $E[\tilde{\beta}] = \beta$,

$$\operatorname{var}(\boldsymbol{a}'\hat{\boldsymbol{\beta}}) \leq \operatorname{var}(\boldsymbol{a}'\tilde{\boldsymbol{\beta}}), \qquad \boldsymbol{a} \in \mathbb{R}^p.$$

► Confidence Intervals: By linearity still have $var(\hat{\beta}) = \sigma^2(X'X)^{-1}$. Turns out that normality-based CI is asymptotically valid.

Motivation

- ▶ Mean Regression: $E[y \mid x] = x'\beta$.
- ▶ Quantile Regression: Define the τ -level quantile function

$$q_{\tau}(y \mid \mathbf{x}) = F_{y \mid \mathbf{x}}^{-1}(\tau \mid \mathbf{x}) \qquad \Longleftrightarrow \qquad \Pr\{y \leq q_{\tau}(y \mid \mathbf{x}) \mid \mathbf{x}\} = \tau.$$

The QR model is

$$q_{\tau}(y \mid \mathbf{x}) = \mathbf{x}'\boldsymbol{\beta},$$

for any $\pmb{x} \in \mathbb{R}^p$ and specific $au \in (0,1)$ (or multiple au each with their own $m{eta}_{ au}$).

Examples

1. Additive Model: $y = x'\beta + \varepsilon$, where ε is an arbitrary error independent of x.

$$\implies q_{\tau}(y \mid \mathbf{x}) = \mathbf{x}'\beta + q_{\tau}(\varepsilon).$$

Examples

2. Location-Scale Model: $y = x'\gamma + x'\eta \cdot \varepsilon$, $\varepsilon \coprod x$.

$$\implies q_{\tau}(y \mid \mathbf{x}) = \mathbf{x}'[\gamma + \boldsymbol{\eta} \cdot q_{\tau}(\varepsilon)].$$

(Having ${\it x}$ in both mean and standard deviation is not a real restriction, i.e., set ${\it x}=({\it z},{\it w})$,

$$\gamma = (\gamma_z, \mathbf{0}), \ \eta = (\mathbf{0}, \eta_w).)$$

Examples

3. Fixed-Quantile Error: $y = x'\beta + \varepsilon$, where ε is not independent of x, but

$$q_{\tau}(\varepsilon \mid \mathbf{x}) = \text{CONST}.$$

For example, $\varepsilon \mid \mathbf{x} \sim \sigma_{\mathbf{x}} \cdot t_{(\nu_{\mathbf{x}})}$, where $\nu_{\mathbf{x}}$ is arbitrary and

$$\sigma_{\mathbf{x}} = \frac{\mathtt{CONST}}{\mathtt{qt}(\tau,\mathtt{df} = \nu_{\mathbf{x}})}$$

Examples

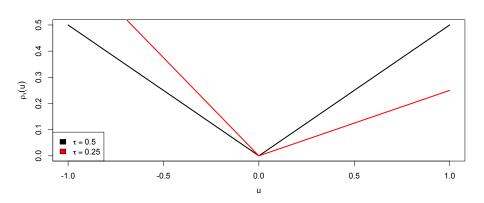
4. Fully specified QR model: $q_{\tau}(y \mid \mathbf{x}) = \mathbf{x}' \boldsymbol{\beta}_{\tau}$ for all $0 < \tau < 1$.

Actually guite restrictive since quantiles need to be ordered:

$$au_1 < au_2 \qquad \Longrightarrow \qquad \mathbf{x}' \boldsymbol{\beta}_{ au_1} < \mathbf{x}' \boldsymbol{\beta}_{ au_2} \quad \forall \ \mathbf{x} \in \mathbb{R}^p.$$

- ▶ Quantile Regression Model: $q_{\tau}(y \mid x) = x'\beta$ for given $\tau \in (0,1)$.
- ▶ Moment Condition: If true parameter value if $\beta = \beta_0$, then

$$\boldsymbol{\beta}_0 = \operatorname*{arg\,min}_{\boldsymbol{\beta}} E[\rho_{\tau}(\boldsymbol{y} - \boldsymbol{x}'\boldsymbol{\beta})], \qquad \rho_{\tau}(\boldsymbol{u}) = \boldsymbol{u} \cdot (\tau - \mathbb{1}\{\boldsymbol{u} < \boldsymbol{0}\}).$$



- ▶ Quantile Regression Model: $q_{\tau}(y \mid x) = x'\beta$ for given $\tau \in (0,1)$.
- ▶ Moment Condition: If true parameter value if $\beta = \beta_0$, then

$$eta_0 = \operatorname*{arg\,min}_{eta} E[
ho_{ au}(y-oldsymbol{x}'eta)], \qquad
ho_{ au}(u) = u \cdot (au - \mathbb{1}\{u < 0\}).$$

► Sample Analog:

$$\hat{\boldsymbol{\beta}} = \operatorname*{arg\,min}_{\boldsymbol{\beta}} \sum_{i=1}^n \rho_{\alpha} (y_i - \boldsymbol{x}_i' \boldsymbol{\beta}).$$

- ▶ Quantile Regression Model: $q_{\tau}(\alpha \mid \mathbf{x}) = \mathbf{x}'\boldsymbol{\beta}$ for given $\tau \in (0,1)$.
- **▶** Point Estimate:

$$\hat{eta} = rg \min_{eta} \sum_{i=1}^n
ho_{ au}(y_i - oldsymbol{x}_i'eta), \quad
ho_{ au}(u) = u \cdot (au - \mathbb{1}\{u < 0\}).$$

Equivalent Formulation:

$$\min_{\boldsymbol{\beta}^+,\boldsymbol{\beta}^-,\boldsymbol{u}^+,\boldsymbol{u}^-} \sum_{i=1}^n \tau u_i^+ + (1-\tau)u_i^- \qquad \text{subject to} \qquad \boldsymbol{X}(\boldsymbol{\beta}^+ - \boldsymbol{\beta}^-) + \boldsymbol{u}^+ - \boldsymbol{u}^- = \boldsymbol{y},$$

where $\beta_j^+ = \max(\beta_j, 0)$, $\beta_j^- = -\min(\beta_j, 0)$ and similarly for u_i^+ and u_i^- .

- ▶ Quantile Regression Model: $q_{\tau}(\alpha \mid \mathbf{x}) = \mathbf{x}'\beta$ for given $\tau \in (0,1)$.
- **▶** Point Estimate:

$$\min_{\boldsymbol{\beta}^+,\boldsymbol{\beta}^-,\boldsymbol{u}^+,\boldsymbol{u}^-} \sum_{i=1}^n \tau u_i^+ + (1-\tau)u_i^- \qquad \text{subject to} \qquad \boldsymbol{X}(\boldsymbol{\beta}^+ - \boldsymbol{\beta}^-) + \boldsymbol{u}^+ - \boldsymbol{u}^- = \boldsymbol{y},$$

where $\beta_j^+ = \max(\beta_j, 0)$, $\beta_j^- = -\min(\beta_j, 0)$ and similarly for u_i^+ and u_i^- .

This is a linear program in $\mathbf{w} = (\beta^+, \beta^-, \mathbf{u}^+, \mathbf{u}^-)$,

$$\hat{\boldsymbol{w}} = \operatorname*{arg\,min} \boldsymbol{c}' \boldsymbol{w}$$
 subject to $\boldsymbol{A} \boldsymbol{w} \leq \boldsymbol{b}, \, \boldsymbol{w} \geq \boldsymbol{0},$

for which efficient algorithms are available.

- ▶ Model: $q_{\tau}(y \mid x) = x'\beta$ for given $\tau \in (0, 1)$.
- ▶ Point Estimate: $\hat{\beta} = \arg\min_{\beta} \sum_{i=1}^{n} \rho_{\tau}(y_i x_i'\beta)$ via linear programming.
- Confidence Intervals: ???, since we don't have a likelihood to calculate
 Observed Fisher Information!
 - ▶ Add modeling assumptions $\implies \hat{\beta} \to \mathcal{N}(\beta_0, \Sigma)$, but Σ is difficult to estimate (nonparametric smoothing estimator with high variance).
 - ► Can do something much simpler... (but computationally more intensive)

The Problem

▶ Data and Model: $y = (y_1, ..., y_n) \sim F(y)$.

I.e., completely general data-generating process (DGP) on the random vector \mathbf{y} . Could be a parametric model $\mathbf{y} \sim f(\mathbf{y} \mid \boldsymbol{\theta})$, a nonparametric model $y_i \stackrel{\text{iid}}{\sim} F(y)$, or a semi-parametric model like quantile regression...

▶ Quantity of Interest: $\tau_0 = \mathcal{G}(F)$.

I.e., τ_0 must be some functional of the DGP. Could be $\tau_0 = \tau(\theta_0)$, or the median of F...

- **Estimator:** $\hat{\tau} = g(y)$.
- **Objective:** Calculate a confidence interval for τ_0 .

The Problem

- ▶ Data and Model: $y = (y_1, ..., y_n) \sim F(y)$.
- ▶ Quantity of Interest: $\tau_0 = \mathcal{G}(F)$.
- **Estimator:** $\hat{\tau} = g(y)$.
- **Objective:** Calculate a confidence interval for τ_0 .
- ▶ Problem: Can't use likelihood theory because:
 - **1.** Don't have a parametric likelihood $f(y \mid \theta)$.
 - 2. Have likelihood but estimator is not MLE (e.g., lasso for variable selection).
 - 3. Have likelihood + MLE, but suspect some degree of model misspecification.
 - **4.** Have likelihood + MLE + correct model, but sample size *n* is too small for asymptotics to kick in.

▶ Data and Model:

$$\mathbf{y} = (y_1, \ldots, y_n) \sim F(\mathbf{y}).$$

- ▶ Quantity of Interest: $\tau_0 = \mathcal{G}(F)$.
- **Estimator:** $\hat{\tau} = g(y)$.
- ▶ **Objective:** Calculate a confidence interval for τ_0 .
- ▶ **Idealized Scenario:** Suppose an oracle gives you the distribution of the pivotal quantity $T = \tau_0 \hat{\tau}$. Then

$$\Pr(L < T < U) = \Pr(L < \tau_0 - \hat{\tau} < U) = \Pr(\hat{\tau} + L < \theta_0 < \hat{\tau} + U).$$

 \implies If L/U are the 2.5/97.5% quantiles of T, then a 95% CI for τ_0 is

$$\tau_0 \in (\hat{\tau} + L, \hat{\tau} + U).$$

► Data and Model:

$$\mathbf{y} = (y_1, \ldots, y_n) \sim \mathbf{F}(\mathbf{y}).$$

- ▶ Quantity of Interest: $\tau_0 = \mathcal{G}(F)$.
- **Estimator:** $\hat{\tau} = g(\mathbf{y})$.
- ▶ Oracle: Suppose distribution of $T = \tau_0 \hat{\tau}$ is given.

- **Bootstrap:** Estimate L and U as follows:
 - 1. Simulate M datasets $\tilde{\mathbf{y}}^{(m)} \stackrel{\text{iid}}{\sim} \hat{\mathbf{F}}(\mathbf{y})$, each of size n, where $\hat{\mathbf{F}}(\mathbf{y})$ is an estimate of $\mathbf{F}(\mathbf{y})$. The two most common ways to do this are:
 - i. Parametric Bootstrap: If $\mathbf{y} \sim f(\mathbf{y} \mid \boldsymbol{\theta})$, then $\tilde{\mathbf{y}}^{(m)} \stackrel{\text{iid}}{\sim} f(\mathbf{y} \mid \hat{\boldsymbol{\theta}})$.
 - ii. Nonparametric Bootstrap: If $y_i \stackrel{\text{iid}}{\sim} F(y)$, then $y_i^{(m)} \stackrel{\text{iid}}{\sim} \hat{F}(y)$, where $\hat{F}(y)$ is the empirical CDF of y. In other words, $\tilde{y}^{(m)}$ is sampled n times with replacement from y.

▶ Data and Model:

$$\mathbf{y} = (y_1, \dots, y_n) \sim \mathbf{F}(\mathbf{y}).$$

- ▶ Quantity of Interest: $\tau_0 = \mathcal{G}(F)$.
- **Estimator:** $\hat{\tau} = g(\mathbf{y})$.
- ▶ Oracle: Suppose distribution of $T = \tau_0 \hat{\tau}$ is given.

- **Bootstrap:** Estimate L and U as follows:
 - 1. Simulate M datasets $\tilde{\mathbf{y}}^{(m)} \stackrel{\text{iid}}{\sim} \hat{\mathbf{F}}(\mathbf{y})$, each of size n, where $\hat{\mathbf{F}}(\mathbf{y})$ is an estimate of $\mathbf{F}(\mathbf{y})$.
 - **2.** For each dataset, calculate $\tilde{\tau}^{(m)} = g(\tilde{\mathbf{y}}^{(m)})$ and $\tilde{T}^{(m)} = \hat{\tau} \tilde{\tau}^{(m)}$.

▶ Data and Model:

$$\mathbf{y} = (y_1, \ldots, y_n) \sim \mathbf{F}(\mathbf{y}).$$

- ▶ Quantity of Interest: $\tau_0 = \mathcal{G}(F)$.
- **Estimator:** $\hat{\tau} = g(\mathbf{y})$.
- ▶ Oracle: Suppose distribution of $T = \tau_0 \hat{\tau}$ is given.

- **Bootstrap:** Estimate L and U as follows:
 - 1. Simulate M datasets $\tilde{\mathbf{y}}^{(m)} \stackrel{\text{iid}}{\sim} \hat{\mathbf{F}}(\mathbf{y})$, each of size n, where $\hat{\mathbf{F}}(\mathbf{y})$ is an estimate of $\mathbf{F}(\mathbf{y})$.
 - 2. For each dataset, calculate $\tilde{\tau}^{(m)} = g(\tilde{\mathbf{y}}^{(m)})$ and $\tilde{T}^{(m)} = \hat{\tau} \tilde{\tau}^{(m)}$.
 - 3. Let \tilde{L}/\tilde{U} be the 2.5/97% sample quantiles of $\tilde{T}^{(1)}, \ldots, \tilde{T}^{(M)}$.

► Data and Model:

$$\mathbf{y} = (y_1, \ldots, y_n) \sim \mathbf{F}(\mathbf{y}).$$

- ▶ Quantity of Interest: $\tau_0 = \mathcal{G}(F)$.
- **Estimator:** $\hat{\tau} = g(y)$.
- ▶ Oracle: Suppose distribution of $T = \tau_0 \hat{\tau}$ is given.

- **Bootstrap:** Estimate L and U as follows:
 - 1. Simulate M datasets $\tilde{\mathbf{y}}^{(m)} \stackrel{\text{iid}}{\sim} \hat{\mathbf{F}}(\mathbf{y})$, each of size n, where $\hat{\mathbf{F}}(\mathbf{y})$ is an estimate of $\mathbf{F}(\mathbf{y})$.
 - **2.** For each dataset, calculate $\tilde{\tau}^{(m)} = g(\tilde{y}^{(m)})$ and $\tilde{T}^{(m)} = \hat{\tau} \tilde{\tau}^{(m)}$.
 - 3. Let \tilde{L}/\tilde{U} be the 2.5/97% sample quantiles of $\tilde{T}^{(1)}, \ldots, \tilde{T}^{(M)}$.
 - \implies The Bootstrap CI for τ_0 is given by $(\hat{\tau} + \tilde{L}, \hat{\tau} + \tilde{U})$.

	Real World	Bootstrap World
Sampling Distribution	$\mathbf{y} \sim \mathbf{F}(\mathbf{y})$	$ ilde{m{y}}\sim\hat{m{F}}(m{y})$
Quantity of Interest	$ au_0 = \mathcal{G}(F)$	$\hat{ au} = g(y)$
Estimator	$\hat{ au} = g(\mathbf{y})$	$ ilde{ au} = g(ilde{oldsymbol{y}})$
Pivotal Quantity	$T= au_0-\hat{ au}$	$ ilde{ au}=\hat{ au}- ilde{ au}$
Quantiles:	P(L < T < U) = 95%	$P(\tilde{L} < \tilde{T} < \tilde{U}) = 95\%$
95% Confidence Interval	Oracle: $(\hat{\tau} + L, \hat{\tau} + U)$	
95% Confidence interval	Bootstrap: $(\hat{ au} + ilde{ t L}, \hat{ au} + ilde{ t U})$	

Parallel between the Real world and the Bootstrap world.

- ▶ **Objective:** Given $U = (U_1, ..., U_n)$, $U_i \stackrel{\text{iid}}{\sim} \text{Unif}(0, \theta)$, we wish to estimate θ .
- ▶ **Simulation Study:** Generate N = 1000 datasets with $\theta_0 = 1$ and perform calculations for each of the following settings:
 - **2.** Estimators: (i) MLE $\hat{\theta}_1 = \max(\mathbf{U})$ and (ii) Unbiased $\hat{\theta}_2 = 2\bar{\mathbf{U}}$ (since $E[\bar{\mathbf{U}}] = \theta/2$).

- ▶ **Objective:** Given $U = (U_1, ..., U_n)$, $U_i \stackrel{\text{iid}}{\sim} \text{Unif}(0, \theta)$, we wish to estimate θ .
- ▶ **Simulation Study:** Generate N = 1000 datasets with $\theta_0 = 1$ and perform calculations for each of the following settings:
 - **1.** Sample Size: (i) n = 100 and (ii) n = 10000
 - **2.** Estimators: (i) MLE $\hat{\theta}_1 = \max(\mathbf{U})$ and (ii) Unbiased $\hat{\theta}_2 = 2\bar{\mathbf{U}}$ (since $E[\bar{\mathbf{U}}] = \theta/2$).

- ▶ **Objective:** Given $U = (U_1, ..., U_n)$, $U_i \stackrel{\text{iid}}{\sim} \text{Unif}(0, \theta)$, we wish to estimate θ .
- ▶ **Simulation Study:** Generate N = 1000 datasets with $\theta_0 = 1$ and perform calculations for each of the following settings:
 - **1.** Sample Size: (i) n = 100 and (ii) n = 10000
 - **2.** Estimators: (i) MLE $\hat{\theta}_1 = \max(\mathbf{U})$ and (ii) Unbiased $\hat{\theta}_2 = 2\bar{\mathbf{U}}$ (since $E[\bar{\mathbf{U}}] = \theta/2$).
 - **3.** Bootstrap Sampling: (i) Nonparametric ($\tilde{\boldsymbol{U}}$ sampled with replacement) and (ii) Parametric ($\tilde{U}_i^{(m)} \stackrel{\text{iid}}{\sim} \text{Unif}(0,\hat{\theta})$). Always use M=1000 bootstrap samples.

- ▶ **Objective:** Given $U = (U_1, ..., U_n)$, $U_i \stackrel{\text{iid}}{\sim} \text{Unif}(0, \theta)$, we wish to estimate θ .
- ▶ **Simulation Study:** Generate N = 1000 datasets with $\theta_0 = 1$ and perform calculations for each of the following settings:
 - **1.** Sample Size: (i) n = 100 and (ii) n = 10000
 - **2.** Estimators: (i) MLE $\hat{\theta}_1 = \max(\mathbf{U})$ and (ii) Unbiased $\hat{\theta}_2 = 2\bar{\mathbf{U}}$ (since $E[\bar{\mathbf{U}}] = \theta/2$).
 - **3.** Bootstrap Sampling: (i) Nonparametric (\tilde{U} sampled with replacement) and (ii) Parametric ($\tilde{U}_i^{(m)} \stackrel{\text{iid}}{\sim} \text{Unif}(0,\hat{\theta})$). Always use M=1000 bootstrap samples.
 - **4.** Confidence Intervals: (i) Basic Bootstrap: $(\hat{\theta} + \tilde{L}, \hat{\theta} + \tilde{U})$ (ii) Percentile Bootstrap 2.5/97.5% quantiles of $\tilde{\theta}^{(1)}, \dots \tilde{\theta}^{(M)}$. (seems simpler but...)

- ▶ **Objective:** Given $U = (U_1, ..., U_n)$, $U_i \stackrel{\text{iid}}{\sim} \text{Unif}(0, \theta)$, we wish to estimate θ .
- ▶ **Simulation Study:** Generate N = 1000 datasets with $\theta_0 = 1$ and perform calculations for each of the following settings:
 - **1.** Sample Size: (i) n = 100 and (ii) n = 10000
 - **2.** Estimators: (i) MLE $\hat{\theta}_1 = \max(\mathbf{U})$ and (ii) Unbiased $\hat{\theta}_2 = 2\bar{\mathbf{U}}$ (since $E[\bar{\mathbf{U}}] = \theta/2$).
 - **3.** Bootstrap Sampling: (i) Nonparametric (\tilde{U} sampled with replacement) and (ii) Parametric ($\tilde{U}_i^{(m)} \stackrel{\text{iid}}{\sim} \text{Unif}(0,\hat{\theta})$). Always use M=1000 bootstrap samples.
 - **4.** Confidence Intervals: (i) Basic Bootstrap: $(\hat{\theta} + \tilde{L}, \hat{\theta} + \tilde{U})$ (ii) Percentile Bootstrap 2.5/97.5% quantiles of $\tilde{\theta}^{(1)}, \ldots \tilde{\theta}^{(M)}$. (seems simpler but...)
 - **5.** Model Misspecification: True sampling distribution is $U_i \stackrel{\text{iid}}{\sim} \theta \times \text{Beta}(\alpha, \alpha)$, where (i) $\alpha = 1$ (Beta(1,1) = Unif(0,1)) and (ii) $\alpha = 2$. (θ is range of distribution, so still meaningfull quantity to estimate. For $\alpha \neq 1$, $\hat{\theta}_1$ no longer MLE, but $\hat{\theta}_2$ still unbiased.)

- ▶ **Objective:** Given $U = (U_1, \ldots, U_n)$, $U_i \stackrel{\text{iid}}{\sim} \text{Unif}(0, \theta)$, we wish to estimate θ .
- ▶ **Simulation Study:** Generate N = 1000 datasets with $\theta_0 = 1$ and perform calculations for each of the following settings:
 - **1.** Sample Size: (i) n = 100 and (ii) n = 10000
 - **2.** Estimators: (i) MLE $\hat{\theta}_1 = \max(\mathbf{U})$ and (ii) Unbiased $\hat{\theta}_2 = 2\bar{\mathbf{U}}$ (since $E[\bar{\mathbf{U}}] = \theta/2$).
 - **3.** Bootstrap Sampling: (i) Nonparametric ($\tilde{\boldsymbol{U}}$ sampled with replacement) and (ii) Parametric ($\tilde{U}_i^{(m)} \stackrel{\text{iid}}{\sim} \text{Unif}(0,\hat{\theta})$). Always use M=1000 bootstrap samples.
 - **4.** Confidence Intervals: (i) Basic Bootstrap: $(\hat{\theta} + \tilde{L}, \hat{\theta} + \tilde{U})$ (ii) Percentile Bootstrap 2.5/97.5% quantiles of $\tilde{\theta}^{(1)}, \ldots \tilde{\theta}^{(M)}$. (seems simpler but...)
 - **5.** Model Misspecification: True sampling distribution is $U_i \stackrel{\text{iid}}{\sim} \theta \times \text{Beta}(\alpha, \alpha)$, where (i) $\alpha = 1$ (Beta(1,1) = Unif(0,1)) and (ii) $\alpha = 2$. (θ is range of distribution, so still meaningfull quantity to estimate. For $\alpha \neq 1$, $\hat{\theta}_1$ no longer MLE, but $\hat{\theta}_2$ still unbiased.)
- ► Comparison Metrics: (i) True coverage of CI and (ii) Average width of CI.

- ▶ **Objective:** Given $U = (U_1, ..., U_n)$, $U_i \stackrel{\text{iid}}{\sim} \text{Unif}(0, \theta)$, wish to estimate θ .
- ▶ **Simulation Study:** For N = 1000 datasets with $\theta_0 = 1$:
 - **1.** Sample Size: (i) n = 100 and (ii) n = 10000
 - **2.** Estimators: (i) $\hat{\theta}_1 = \max(\mathbf{U})$ and (ii) $\hat{\theta}_2 = 2\bar{\mathbf{U}}$.
 - 3. Bootstrap Sampling: For M = 1000 bootstrap samples, sampling is
 - i. Nonparametric: $\tilde{m{U}}$ sampled with replacement.

Variance Reduction Use same $\tilde{\boldsymbol{U}}^{(m)}$ to calculate both $\hat{\theta}_1^{(m)}$ and $\hat{\theta}_2^{(m)}$. \Longrightarrow Monte Carlo difference between comparison metrics has same expectation, but lower variance

- ii. Parametric: $\tilde{U}_{:}^{(m)} \stackrel{\text{iid}}{\sim} \text{Unif}(0, \hat{\theta})$.
- 4. Confidence Intervals: (i) Basic Bootstrap and (ii) Percentile Bootstrap.
- **5.** Model Misspecification: $U_i \stackrel{\text{iid}}{\sim} \theta \times \text{Beta}(\alpha, \alpha)$, where (i) $\alpha = 1$ and (ii) $\alpha = 2$.
- ► Comparison Metrics: (i) True coverage of CI and (ii) Average width of CI.

- ▶ **Objective:** Given $U = (U_1, ..., U_n)$, $U_i \stackrel{\text{iid}}{\sim} \text{Unif}(0, \theta)$, wish to estimate θ .
- ▶ **Simulation Study:** For N = 1000 datasets with $\theta_0 = 1$:
 - **1.** Sample Size: (i) n = 100 and (ii) n = 10000
 - **2.** Estimators: (i) $\hat{\theta}_1 = \max(\mathbf{U})$ and (ii) $\hat{\theta}_2 = 2\bar{\mathbf{U}}$.
 - 3. Bootstrap Sampling: For M = 1000 bootstrap samples, sampling is
 - i. Nonparametric: $\tilde{m{U}}$ sampled with replacement.

Variance Reduction Use same $\tilde{\pmb{U}}^{(m)}$ to calculate both $\hat{\theta}_1^{(m)}$ and $\hat{\theta}_2^{(m)}$.

- ii. Parametric: $\tilde{U}_{i}^{(m)} \stackrel{\text{iid}}{\sim} \text{Unif}(0,\hat{\theta})$.
 - Variance Reduction Use same $\tilde{R}_i^{(m)} \stackrel{\text{iid}}{\sim} \text{Unif}(0,1)$, and let $\tilde{U}_i^{(m)} = \hat{\theta}_k \tilde{R}_i^{(m)}$, k = 1, 2.
- 4. Confidence Intervals: (i) Basic Bootstrap and (ii) Percentile Bootstrap.
- **5.** Model Misspecification: $U_i \stackrel{\text{iid}}{\sim} \theta \times \text{Beta}(\alpha, \alpha)$, where (i) $\alpha = 1$ and (ii) $\alpha = 2$.
- ► Comparison Metrics: (i) True coverage of CI and (ii) Average width of CI.

Actual Coverage					Interval Width					
alpha = 1					alpha = 1					
	NP_max 1	NP_mean2	P_max	P_mean2		NP_max 1	<pre>VP_mean2</pre>	P_max	P_mean2	
basic_n=100	0.86	0.94	0.94	0.95	basic_n=100	0.03	0.22	0.04	0.22	
basic_n=10K	0.89	0.95	0.95	0.94	basic_n=10K	0.00	0.02	0.00	0.02	
pct_n=100	0.00	0.95	0.00	0.95	pct_n=100	0.03	0.22	0.04	0.22	
pct_n=10K	0.00	0.95	0.00	0.95	pct_n=10K	0.00	0.02	0.00	0.02	
alpha = 2					alpha = 2					
	NP_max NP_mean2 P_max P_mean2					NP_max	NP_mean	2 P_ma	x P_mean2	
basic_n=100	0.60	0.93	0.29	0.98	basic_n=100	0.07	0.17	0.03	0.22	
basic_n=10K	0.57	0.95	0.00	0.98	basic_n=10K	0.01	0.02	0.00	0.02	
pct_n=100	0.00	0.94	0.00	0.98	pct_n=100	0.07	0.17	0.03	0.22	
pct_n=10K	0.00	0.95	0.00	0.99	pct_n=10K	0.01	0.02	0.00	0.02	

Remarks:

1. Percentile CI based on $\hat{\theta}_1 = \max(\mathbf{U})$ has 0% coverage! This is because $\theta_0 > \hat{\theta}_1 > \tilde{\theta}_1^{(m)}$, so quantiles of $\tilde{\theta}_1^{(m)}$ can never cover θ_0 .

Actual Coverage				Interval Width					
alpha = 1					alpha = 1				
	NP_max N	IP_mean2	P_max	P_mean2		NP_max 1	VP_mean2	P_max	P_mean2
basic_n=100	0.86	0.94	0.94	0.95	basic_n=100	0.03	0.22	0.04	0.22
basic_n=10K	0.89	0.95	0.95	0.94	basic_n=10K	0.00	0.02	0.00	0.02
pct_n=100	0.00	0.95	0.00	0.95	pct_n=100	0.03	0.22	0.04	0.22
pct_n=10K	0.00	0.95	0.00	0.95	pct_n=10K	0.00	0.02	0.00	0.02
alpha = 2					alpha = 2				
	NP_max N	IP_mean2	P_max	P_mean2		NP_max	NP_mean	2 P_max	x P_mean2
basic_n=100	0.60	0.93	0.29	0.98	basic_n=100	0.07	0.17	0.03	0.22
basic_n=10K	0.57	0.95	0.00	0.98	basic_n=10K	0.01	0.02	0.00	0.02
pct_n=100	0.00	0.94	0.00	0.98	pct_n=100	0.07	0.17	0.03	0.22
pct_n=10K	0.00	0.95	0.00	0.99	pct_n=10K	0.01	0.02	0.00	0.02

Remarks:

2. NP bootstrap with Basic CI does not approach 95% coverage as sample size $n \to \infty$! This is because bootstrap only works if $\tilde{\theta}$ and $\hat{\theta}$ have the same distribution as $n \to \infty$. However, $\hat{\theta}_1 \sim \theta_0 \times \text{Beta}(1,n)$ is a continuous distribution, but

$$\Pr(\tilde{\theta}_1 = \hat{\theta}_1) = 1 - \Pr(\tilde{\theta}_1 \neq \hat{\theta}_1) = 1 - (1 - \frac{1}{n})^n \to 1 - e^{-1} \approx 0.63.$$

Therefore, $\tilde{\theta}_1$ has a non-vanishing point mass at $\hat{\theta}_1$, so doesn't get close to continuous distribution of $\hat{\theta}_1$.

Actual Coverage				Interval Width					
alpha = 1	NP max N	P mean2	P max	P mean2	alpha = 1	NP max N	IP mean2	P max	P mean2
basic_n=100	0.86	0.94	0.94	0.95	basic_n=100	0.03	_	0.04	0.22
basic_n=10K	0.89	0.95	0.95	0.94	basic_n=10K	0.00	0.02	0.00	0.02
pct_n=100	0.00	0.95	0.00	0.95	pct_n=100	0.03	0.22	0.04	0.22
pct_n=10K	0.00	0.95	0.00	0.95	pct_n=10K	0.00	0.02	0.00	0.02
alpha = 2					alpha = 2				
	NP_max N	P_mean2	P_max	P_mean2		NP_{max}	NP_mean	2 P_max	P_mean2
basic_n=100	0.60	0.93	0.29	0.98	basic_n=100	0.07	0.17	0.03	0.22
basic_n=10K	0.57	0.95	0.00	0.98	basic_n=10K	0.01	0.02	0.00	0.02
pct_n=100	0.00	0.94	0.00	0.98	pct_n=100	0.07	0.17	0.03	0.22
pct_n=10K	0.00	0.95	0.00	0.99	pct_n=10K	0.01	0.02	0.00	0.02

Remarks:

3. NP-CI for $\hat{\theta}_2$ have the right coverage, even under wrong model $\alpha=2$. On the other hand P-CI with $\hat{\theta}_2$ overcover under wrong model (98% instead of 95%).

Actual Coverage			Interval Width						
alpha = 1					alpha = 1				
-	NP_max 1	VP_mean2	P_max	P_mean2	-	NP_max 1	<pre>VP_mean2</pre>	P_max	P_mean2
basic_n=100	0.86	0.94	0.94	0.95	basic_n=100	0.03	0.22	0.04	0.22
basic_n=10K	0.89	0.95	0.95	0.94	basic_n=10K	0.00	0.02	0.00	0.02
pct_n=100	0.00	0.95	0.00	0.95	pct_n=100	0.03	0.22	0.04	0.22
pct_n=10K	0.00	0.95	0.00	0.95	pct_n=10K	0.00	0.02	0.00	0.02
alpha = 2					alpha = 2				
NP max NP mean2 P max P mean2						NP_max NP_mean2 P_max P_mean			
basic_n=100	0.60	0.93	0.29	0.98	basic_n=100	0.07	0.17	0.03	0.22
basic_n=10K	0.57	0.95	0.00	0.98	basic_n=10K	0.01	0.02	0.00	0.02
pct_n=100	0.00	0.94	0.00	0.98	pct_n=100	0.07	0.17	0.03	0.22
pct_n=10K	0.00	0.95	0.00	0.99	pct_n=10K	0.01	0.02	0.00	0.02

Remarks:

4. $\hat{\theta}_1$ does not converge to θ_0 under the wrong model $\alpha=2$, so CI has poor coverage. On the other hand, interval width is narrower than with $\hat{\theta}_2$, because max has less variance than mean.

Example: GARCH Stochastic Volatility Model

▶ SDE SV Model: Let $(\Delta X_t, \Delta V_t)$ be the asset/volatility log-return/return on day t. The basic SDE-SV model is

$$\Delta X_t = (\alpha - \frac{1}{2}V_t)\Delta t + V_t^{1/2}\Delta B_{1t}$$

$$\Delta V_t = -\gamma(V_t - \mu)\Delta t + \sigma V_t^{1/2}\Delta B_{2t}$$

- ▶ Pros: Excellent performance; easy to calibrate when V_t is observed (e.g., VIX for GSPC).
- ▶ Cons: Extremely difficult to calibrate when V_t is latent, since $\ell(\theta \mid X)$ is not available in closed-form, i.e,

$$\mathcal{L}(\theta \mid \mathbf{X}) \propto p(\mathbf{X} \mid \theta) = \int p(\mathbf{X}, \mathbf{V} \mid \theta) d\mathbf{V}$$

GARCH Stochastic Volatility Model

► SDE SV Model:

$$\Delta X_t = (\alpha - \frac{1}{2}V_t)\Delta t + V_t^{1/2}\Delta B_{1t}$$

$$\Delta V_t = -\gamma(V_t - \mu)\Delta t + \sigma V_t^{1/2}\Delta B_{2t}$$

▶ **GARCH SV Model:** Let $\varepsilon_t = \Delta X_t$. The GARCH(1,1) model is

$$\varepsilon_t = \sigma_t z_t, \qquad z_t \stackrel{\text{iid}}{\sim} \mathcal{N}(0, 1)$$
$$\sigma_t^2 = \omega + \alpha \varepsilon_{t-1}^2 + \beta \sigma_{t-1}^2$$

- ▶ Like SDEs, volatility σ_t is stochastic.
- ▶ Pros: Inference with GARCH is far simpler than with SDE (closed-form likelihood).
- ► Cons: Unlike SDEs, GARCH is a discrete-time model (difficult for option pricing and consistency across timescales)

GARCH Stochastic Volatility Model

- ▶ Data: Asset values $S = (S_0, ..., S_N) \implies \text{log-returns } \varepsilon = (\varepsilon_1, ..., \varepsilon_N)$, with $\varepsilon_t = \log(S_t/S_{t-1})$.
- ► GARCH(1,1) Model: $\varepsilon_t = \sigma_t z_t, \qquad z_t \stackrel{\text{iid}}{\sim} \mathcal{N}(0,1)$ $\sigma_t^2 = \omega + \alpha \varepsilon_{t-1}^2 + \beta \sigma_{t-1}^2$
- ▶ **Objective:** On given day N, estimate the p-day forward τ -level Value-At-Risk, i.e., the conditional quantile

$$\mathsf{VaR}_{\tau} = q_{\tau} \left(\frac{S_{N+\rho} - S_{N}}{S_{N}} \mid \boldsymbol{S}, \boldsymbol{\theta} \right) \quad \Longleftrightarrow \quad \mathsf{Pr} \left(\frac{S_{N+\rho} - S_{N}}{S_{N}} < \mathsf{VaR}_{\tau} \mid \boldsymbol{S}, \boldsymbol{\theta} \right) = \tau.$$

For example, we would say that the 10-day 5%-level VaR of AAPL is a 1.3% drop in value.

GARCH Model

► Model:

$$arepsilon_t = \sigma_t z_t, \qquad z_t \stackrel{\mathsf{iid}}{\sim} \mathcal{N}(0, 1)$$

$$\sigma_t^2 = \omega + \alpha \varepsilon_{t-1}^2 + \beta \sigma_{t-1}^2$$

- **▶** Parameter Estimation:
 - ► *R Packages* **rugarch**, **fGarch**. The former is more stable, the latter is faster. Both can fit numerous extensions to the basic GARCH(1,1) model above.
 - ▶ Profile Likelihood For $\theta = (\omega, \alpha, \beta)$

$$\begin{split} \ell(\boldsymbol{\theta} \mid \boldsymbol{\varepsilon}) &= -\frac{1}{2} \sum_{t=1}^{N} \frac{\varepsilon_{t}^{2}}{\sigma_{t}^{2}} + \log(\sigma_{t}^{2}), & \sigma_{t}^{2} &= \omega + \alpha \varepsilon_{t-1}^{2} + \beta \sigma_{t-1}^{2} \\ &= -\frac{1}{2} \sum_{t=1}^{N} \frac{\varepsilon_{t}^{2}}{\boldsymbol{\omega} \cdot \tilde{\sigma}_{t}^{2}} + \log(\boldsymbol{\omega} \cdot \tilde{\sigma}_{t}^{2}), & \tilde{\sigma}_{t}^{2} &= 1 + \eta \varepsilon_{t-1}^{2} + \beta \tilde{\sigma}_{t-1}^{2}, \end{split}$$

where
$$\eta = \alpha/\omega \implies \hat{\omega}(\eta, \beta) = \sum_{t=1}^{N} (\varepsilon_t/\tilde{\sigma}_t)^2$$
.

(Note the technical issue of initializing $\tilde{\sigma}_1$ which we won't discuss here.)

Value-at-Risk

► GARCH(1,1) Model:
$$\varepsilon_t = \sigma_t z_t, \quad z_t \stackrel{\text{iid}}{\sim} \mathcal{N}(0,1)$$

 $\sigma_t^2 = \omega + \alpha \varepsilon_{t-1}^2 + \beta \sigma_{t-1}^2$

► Value-at-Risk:

$$\mathsf{VaR}_{\tau} = q_{\tau} \left(\frac{S_{N+p} - S_{N}}{S_{N}} \mid \boldsymbol{S}, \boldsymbol{\theta} \right) \quad \Longleftrightarrow \quad \mathsf{Pr} \left(\frac{S_{N+p} - S_{N}}{S_{N}} < \mathsf{VaR}_{\tau} \mid \boldsymbol{S}, \boldsymbol{\theta} \right) = \tau.$$

- ▶ 1-Day VaR: For given θ and data $\varepsilon = (\varepsilon_1, \dots, \varepsilon_N)$
 - **1.** Let $\sigma_1^2 = E[\sigma_1^2 \mid \theta] = \omega/(1 \alpha \beta)$
 - **2.** Use GARCH equation to obtain $\sigma_{N+1}^2 = \omega + \alpha \varepsilon_N^2 + \beta \sigma_N^2$
 - $\textbf{3.} \ (S_{N+1}-S_N)/S_N=\exp(\varepsilon_{N+1})-1 \implies \mathsf{VaR}_\tau=\exp\{\mathtt{qnorm}(\tau\mid 0,\sigma_{N+1})\}-1$

In other words, $VaR_{\tau} = VaR_{\tau}(\theta \mid \varepsilon)$ is a function of θ (and observed data ε).

Value-at-Risk

► GARCH(1,1) Model:
$$\varepsilon_t = \sigma_t z_t, \quad z_t \stackrel{\text{iid}}{\sim} \mathcal{N}(0,1)$$

$$\sigma_t^2 = \omega + \alpha \varepsilon_{t-1}^2 + \beta \sigma_{t-1}^2$$

- ▶ 1-Day VaR: For given θ and data $\varepsilon = (\varepsilon_1, ..., \varepsilon_N)$
 - **1.** Let $\sigma_1^2 = E[\sigma_1^2 \mid \theta] = \omega/(1 \alpha \beta)$
 - **2.** Use GARCH equation to obtain $\sigma_{N+1}^2 = \omega + \alpha \varepsilon_N^2 + \beta \sigma_N^2$
 - 3. $(S_{N+1} S_N)/S_N = \exp(\varepsilon_{N+1}) 1 \implies \text{VaR}_{\tau} = \exp\{\operatorname{qnorm}(\tau \mid 0, \sigma_{N+1})\} 1$ In other words, $\text{VaR}_{\tau} = \text{VaR}_{\tau}(\boldsymbol{\theta} \mid \boldsymbol{\varepsilon})$.
- ▶ **Inference:** If $\hat{\theta}$ is the MLE of GARCH model, then
 - ► *MLE*: Use plug-in principle: $V\hat{a}R_{\tau} = VaR_{\tau}(\hat{\theta} \mid \varepsilon)$.
 - ► Confidence Intervals?

▶ Data-Generating Process: Let $Y_1, Y_2,...$ be some stochastic process determined by a parameter $\theta \in \mathbb{R}^p$

(In the simplest case, we have $Y_n \stackrel{\text{iid}}{\sim} f(y \mid \theta)$, but the theory works for stationary processes such as GARCH(1.1) as well).

▶ **Asymptotic Normality:** For $Y_{1:n} = (Y_1, ..., Y_n)$, suppose the MLE and the inverse Fisher Information

$$\hat{\boldsymbol{\theta}}_n = \operatorname{arg\,max}_{\boldsymbol{\theta}} \ell(\boldsymbol{\theta} \mid \mathbf{Y}_{1:n}), \qquad \hat{\mathbf{V}}_n = \left[- rac{\partial^2}{\partial \boldsymbol{\theta}^2} \ell(\boldsymbol{\theta} \mid \mathbf{Y}_{1:n})
ight]^{-1}$$

satisfy the usual asymptotic theory, i.e., $\hat{\pmb{V}}_n^{1/2}(\hat{\pmb{\theta}}_n - \pmb{\theta}_0) \to \mathcal{N}(\pmb{0}, \pmb{I}_p)$ as $n \to \infty$, where $\pmb{\theta}_0$ is the true parameter value.

Theorem: Let $\hat{\theta}_n$ be a sequence of estimators such that as $n \to \infty$ we have

$$\hat{oldsymbol{V}}_n^{1/2}(\hat{oldsymbol{ heta}}_n-oldsymbol{ heta}_0)
ightarrow\mathcal{N}(oldsymbol{0},oldsymbol{I}).$$

Suppose that $\tau: \mathbb{R}^p \to \mathbb{R}^q$ is a continuously differentiable function with $q \leq p$, and we wish to estimate $\tau_0 = \tau(\theta_0)$. Then as $n \to \infty$ we have

$$egin{aligned} \hat{oldsymbol{\Sigma}}_n^{1/2}(\hat{oldsymbol{ au}}_n - oldsymbol{ au}_0) &
ightarrow \mathcal{N}(oldsymbol{0}, oldsymbol{I}), \qquad \hat{oldsymbol{ au}}_n = oldsymbol{ au}(\hat{oldsymbol{ heta}}_n)]' \hat{oldsymbol{V}}_n[
abla oldsymbol{ au}(\hat{oldsymbol{ heta}}_n)]. \end{aligned}$$

Theorem: Let $\hat{\theta}_n$ be a sequence of estimators such that as $n \to \infty$ we have

$$\hat{\boldsymbol{V}}_n^{1/2}(\hat{\boldsymbol{\theta}}_n-\boldsymbol{\theta}_0) o \mathcal{N}(\boldsymbol{0},\boldsymbol{I}).$$

Suppose that $\tau: \mathbb{R}^p \to \mathbb{R}^q$ is a continuously differentiable function with $q \leq p$, and we wish to estimate $\tau_0 = \tau(\theta_0)$. Then as $n \to \infty$ we have

$$egin{aligned} \hat{oldsymbol{\Sigma}}_n^{1/2}(\hat{oldsymbol{ au}}_n - oldsymbol{ au}_0) &
ightarrow \mathcal{N}(oldsymbol{0}, oldsymbol{I}), \qquad \hat{oldsymbol{ au}}_n = oldsymbol{ au}(\hat{oldsymbol{ heta}}_n) \ \hat{oldsymbol{\Sigma}}_n = [
abla oldsymbol{ au}(\hat{oldsymbol{ heta}}_n)]' \hat{oldsymbol{V}}_n [
abla oldsymbol{ au}(\hat{oldsymbol{ heta}}_n)]. \end{aligned}$$

Proof: The 1st order Taylor expansion of $au(\hat{ heta}_n)$ about $heta= heta_0$ gives

$$au(\hat{m{ heta}}_n) - au(m{ heta}_0) pprox [
abla au(m{ heta}_0)]'(\hat{m{ heta}}_n - m{ heta}_0).$$

Since $\hat{\boldsymbol{\theta}}_n - \boldsymbol{\theta}_0 \approx \mathcal{N}(\mathbf{0}, \hat{\boldsymbol{V}}_n)$, by linearity of MVN we have

$$\hat{\boldsymbol{\tau}}_n - \boldsymbol{\tau}_0 \approx \mathcal{N}(\mathbf{0}, [\nabla \boldsymbol{\tau}(\boldsymbol{\theta}_0)]' \hat{\boldsymbol{V}}_n [\nabla \boldsymbol{\tau}(\boldsymbol{\theta}_0)]).$$

▶ Theorem: If $\hat{\mathbf{V}}_n^{1/2}(\hat{\boldsymbol{\theta}}_n - \boldsymbol{\theta}_0) \to \mathcal{N}(\mathbf{0}, \mathbf{I})$ and $\boldsymbol{\tau} : \mathbb{R}^p \to \mathbb{R}^q$ is a continuously differentiable function with $q \leq p$, then

$$egin{aligned} \hat{oldsymbol{\Sigma}}_n^{1/2}(\hat{oldsymbol{ au}}_n - oldsymbol{ au}_0) &
ightarrow \mathcal{N}(oldsymbol{0}, oldsymbol{I}), \qquad \hat{oldsymbol{ au}}_n = oldsymbol{ au}(\hat{oldsymbol{ heta}}_n)]' \hat{oldsymbol{V}}_n[
abla oldsymbol{ au}(\hat{oldsymbol{ heta}}_n)]. \end{aligned}$$

▶ **Upshot:** If $(\hat{\theta}, \hat{V})$ are the MLE and its variance estimator, a confidence interval for a 1D quantity of interest $\tau_0 = \tau(\theta_0)$ can be constructed via

$$\hat{ au} \pm 1.96 \cdot s_{\hat{ au}}, \qquad \hat{ au} = au(\hat{m{ heta}})$$

$$s_{\hat{ au}} = \sqrt{[
abla au(\hat{m{ heta}})]' \hat{m{ heta}}[
abla au(\hat{m{ heta}})]}.$$

Can use this to calculate CI for 1-day $VaR_{\tau} = \tau(\theta_0) = VaR_{\tau}(\theta_0 \mid \varepsilon)$.

Value-at-Risk

$$\varepsilon_{t} = \sigma_{t} z_{t}, \qquad z_{t} \stackrel{\text{iid}}{\sim} \mathcal{N}(0, 1)$$

$$\sigma_{\star}^{2} = \omega + \alpha \varepsilon_{\star}^{2} + \beta \sigma_{\star}^{2}$$

► Value-at-Risk:

$$\mathsf{VaR}_\tau = q_\tau \left(\frac{S_{N+p} - S_N}{S_N} \mid \boldsymbol{S}, \boldsymbol{\theta} \right) \quad \Longleftrightarrow \quad \mathsf{Pr} \left(\frac{S_{N+p} - S_N}{S_N} < \mathsf{VaR}_\tau \mid \boldsymbol{S}, \boldsymbol{\theta} \right) = \tau.$$

No analytic solution for p > 1.

- ▶ Point Estimate: Use Monte Carlo:
 - 1. For given θ , analytically obtain $\sigma_1^2, \ldots, \sigma_N^2$
 - 2. Generate M iid realizations of $R = \log(S_{N+p}/S_N)$ from $p(R \mid \varepsilon_N, \sigma_N)$ using GARCH. (Note that $R = \sum_{i=1}^p \varepsilon_{N+1}$)
 - 3. The Monte Carlo approximation is $VaR_{\tau} = \exp{\{\hat{q}_{\tau}(R \mid \varepsilon_{N}, \theta)\}} 1$, where $\hat{q}_{\tau}(R \mid \varepsilon_{N}, \theta)$ is the τ -level sample quantile of the iid realizations $R^{(1)}, \ldots, R^{(M)}$.
- ▶ Interval Estimate: Use Delta-Method, with $\hat{VaR}_{\tau} = \exp{\{\hat{q}_{\tau}(R \mid \varepsilon_{N}, \hat{\theta})\}} 1$, but with variance reduction, i.e., same $z_{N+1}^{(m)}, \ldots, z_{N+n}^{(m)}$ for every value of θ .

Value-at-Risk

► GARCH(1,1) Model:
$$\varepsilon_t = \sigma_t z_t, \quad z_t \stackrel{\text{iid}}{\sim} \mathcal{N}(0,1)$$

$$\varepsilon_t = \sigma_t z_t, \qquad z_t \sim \mathcal{N}(0, \sigma_t^2 = \omega + \alpha \varepsilon_{t-1}^2 + \beta \sigma_{t-1}^2)$$

► Value-at-Risk:

$$\mathsf{VaR}_{\tau} = q_{\tau} \left(\frac{S_{N+p} - S_{N}}{S_{N}} \mid \boldsymbol{S}, \boldsymbol{\theta} \right) \quad \Longleftrightarrow \quad \mathsf{Pr} \left(\frac{S_{N+p} - S_{N}}{S_{N}} < \mathsf{VaR}_{\tau} \mid \boldsymbol{S}, \boldsymbol{\theta} \right) = \tau.$$

- ▶ Point/Interval Estimate: Monte Carlo + Delta Method
- ▶ Model Misspecification: Suppose we have GARCH(1,1), but with $z_t \stackrel{\text{iid}}{\sim} F(z)$ with $F \neq \mathcal{N}(0,1)$?
- ► Residual Bootstrap:
 - ► GARCH model: $\varepsilon_t = \sigma_t z_t$, $\sigma_t^2 = \omega + \alpha \varepsilon_{t-1}^2 + \beta \sigma_{t-1}^2$
 - ▶ Use $\hat{\theta}$ to calculate $\hat{\sigma} = (\hat{\sigma}_1, \dots, \hat{\sigma}_N)$ and residuals $\hat{\mathbf{z}} = (\hat{z}_1, \dots, \hat{z}_N) = \varepsilon/\hat{\sigma}$.
 - ightharpoonup Obtain Bootstrap residuals \tilde{z} by sampling with replacement from \hat{z}
 - ▶ Bootstrap log-returns: $\tilde{\varepsilon}_t = \tilde{\sigma}_t \tilde{z}_t$, $\sigma_t^2 = \hat{\omega} + \hat{\alpha} + \tilde{\varepsilon}_{t-1}^2 + \hat{\beta} \tilde{\sigma}_{t-1}^2$