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Motivation

» Normal Regression Model: y; = x/8 + ¢;, € i (0,02).
> MLE: 8 =(X'X)"'X'y
> Confidence Intervals: 8 ~ N (B,05°V), V = (X'X)"".
= 95% Cl for §; is f; £ 1.96 - 6V;/?, where & is the MLE of 0.

(This is the Observed Fisher Information method, which is indistinguishable from the exact Cl

based on the t(,_p) distribution for n — p > 30.)
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Motivation

» Normal Regression Model: y; = x/8 + ¢;, e (0, 52).
> Relaxed Assumptions: y; = x/3 + ¢;, e f(e),
Elei] =0, var(e;) = 1.

» Estimator: Under Relaxed Assumptions, ,@ is the Best Linear Unbiased Estimator
(BLUE), in the sense that for any 3 = Ay with E[3] =

var(a'B) < var(a'B), acR.

> Confidence Intervals: By linearity still have var(8) = ¢%(X’X)~!. Turns out that

normality-based Cl is asymptotically valid.
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Motivation

» Mean Regression: E[y | x] = x'3.
» Quantile Regression: Define the 7-level quantile function
¢y x)=FXrlx) =  Prly<a(y|x)|x}=r

The QR model is
a-(y | x) = x'B,

for any x € RP and specific 7 € (0,1) (or multiple T each with their own 3,).
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Quantile Regression

Examples

1. Additive Model: y = x’3 + ¢, where ¢ is an arbitrary error independent of x.

— CIT(Y ‘ X) =x'B+ q,,_(s).
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Quantile Regression

Examples

2. Location-Scale Model: y = x'v + x'n-¢, eIlx.

= q:(y | x) =X[y+n-q:()]-
(Having x in both mean and standard deviation is not a real restriction, i.e., set x = (z, w),

v =(7,0),7=(0,7,).)
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Quantile Regression

Examples

3. Fixed-Quantile Error: y = x'3 + ¢, where ¢ is not independent of x, but
g-(e | x) = CONST.

For example, € | x ~ 0y - t(,,), where vy is arbitrary and

CONST

Ix = qt(7,df = vy)
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Quantile Regression

Examples

4. Fully specified QR model: q.(y | x) = x'8, forall 0 < 7 < 1.
Actually quite restrictive since quantiles need to be ordered:

< T = x'B, <x'B, VxeRP.
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Parameter Estimation
» Quantile Regression Model: g.(y | x) = x’S for given 7 € (0,1).

> Moment Condition: If true parameter value if 8 = 3, then

Bo = arg min Elp-(y =x'B),  pr(v) =u- (7 — 1{u <0}).
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Parameter Estimation

» Quantile Regression Model: g.(y | x) = x’3 for given 7 € (0,1).

> Moment Condition: If true parameter value if 8 = 3, then

By =g min Elp-(y ~XB)l,  pr(v) = u- (-~ 1{u <0))

» Sample Analog;:

n
B = arg min > palyi = XiB).
i=1
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Parameter Estimation

» Quantile Regression Model: g.-(« | x) = x’3 for given 7 € (0, 1).

» Point Estimate:
B=ammind_pelyi = xiB), pelu) = u: (= 1{u<0),
i=1
Equivalent Formulation:

n
. min ZTU,JF—&—(l—T)uf subject to X(B B )tut—u =y,
BB utu

where 8 = max(63;,0), 8; = —min(f3;,0) and similarly for u;" and u; .
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Parameter Estimation

» Quantile Regression Model: ¢.(« | x) = x’3 for given T € (0, 1).
» Point Estimate:
ﬁ+,/3m,ilr}+,uf izngfufr—&—(l—r)ui_ subject to  X(BT—B7)+ut—u" =y,
where ﬂjr = max(f3;,0), B;” = —min(f3;,0) and similarly for ui and u; .
This is a linear program in w = (87,87, u™,u™),
W = argminc'w subject to Aw < b,w >0,

for which efficient algorithms are available.
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Quantile Regression

» Model: g,(y | x) = x'B for given 7 € (0,1).
» Point Estimate: 3 = arg ming >4 p-(yi — xjB) via linear programming.

» Confidence Intervals: 777, since we don't have a likelihood to calculate
Observed Fisher Information!

» Add modeling assumptions = B — N(B,, £), but ¥ is difficult to estimate

(nonparametric smoothing estimator with high variance).

» Can do something much simpler... (but computationally more intensive)
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The Problem
» Data and Model: y = (y1,...,y,) ~ F(y).

l.e., completely general data-generating process (DGP) on the random vector

y. Could be a parametric model y ~ f(y | ), a nonparametric model
Vi i F(y), or a semi-parametric model like quantile regression...

» Quantity of Interest: 7o = G(F).

l.e., 7o must be some functional of the DGP. Could be 75 = 7(6yp), or the
median of F...

» Estimator: 7 = g(y).

» Objective: Calculate a confidence interval for 7.
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The Problem

Data and Model: y = (y1,...,v,) ~ F(y).

>
> Quantity of Interest: 79 = G(F).
|

Estimator: 7 = g(y).

v

v

1.

2
3.
4

Objective: Calculate a confidence interval for 7.

Problem: Can't use likelihood theory because:

Don’t have a parametric likelihood f(y | ).

. Have likelihood but estimator is not MLE (e.g., lasso for variable selection).
Have likelihood + MLE, but suspect some degree of model misspecification.

. Have likelihood + MLE + correct model, but sample size n is too small for

asymptotics to kick in.
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The Bootstrap Method

» Data and Model: » Quantity of Interest: 75 = G(F).
y =0y ~ Fly), » Estimator: 7 = g(y).
» Objective: Calculate a confidence interval for 7.

» Idealized Scenario: Suppose an oracle gives you the distribution of the
pivotal quantity T =79 — 7. Then

P(L<T<U)=Pr(L<mg—-7F<U)=Pr(T+L<by <7+ U).
= If L/U are the 2.5/97.5% quantiles of T, then a 95% Cl for g is

T € (T 4+ L, 7+ V).

STAT 440/840 — CM 761: Computational Inference The Bootstrap Method 9/25



The Bootstrap Method

» Data and Model: » Quantity of Interest: 7o = G(F).
Y=o yn) ~ Fly). » Estimator: 7 = g(y).
» Oracle: Suppose distribution of T = 79 — 7 is given.
If L/U are the 2.5/97.5% quantiles of T, then Cl for g is (7 + L, 7 + U).
» Bootstrap: Estimate L and U as follows:

1. Simulate M datasets 7™ X F(y), each of size n, where F(y) is an estimate of
F(y). The two most common ways to do this are:

i. Parametric Bootstrap: If y ~ f(y | 8), then 7(™ S f(y | 6).

ii. Nonparametric Bootstrap: If y; < F(y), then y.<m) i F(y), where F(y) is the

1
empirical CDF of y. In other words, (™ is sampled n times with replacement from y.
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The Bootstrap Method

» Data and Model: » Quantity of Interest: 70 = G(F).
y =W yn) ~ Fy). » Estimator: 7 = g(y).
» Oracle: Suppose distribution of T = 79 — 7 is given.
If L/U are the 2.5/97.5% quantiles of T, then Cl for 7y is (7 + L, 7 + U).
» Bootstrap: Estimate L and U as follows:

1. Simulate M datasets (™ F(y), each of size n, where F(y) is an estimate of
F(y)-

2. For each dataset, calculate 7™ = g(7'™) and T™ =+ — #(m),
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The Bootstrap Method

» Data and Model: » Quantity of Interest: 70 = G(F).
y:(}/h”w}/n)NF(y)' » Estimator: ?Zg(y).

» Oracle: Suppose distribution of T = 79 — 7 is given.
If L/U are the 2.5/97.5% quantiles of T, then Cl for 7y is (7 + L, 7 + U).

» Bootstrap: Estimate L and U as follows:

1. Simulate M datasets (™ F(y), each of size n, where F(y) is an estimate of
F(y)-

2. For each dataset, calculate 7™ = g(7'™) and T™ =+ — #(m),

3. Let L/U be the 2.5/97% sample quantiles of 7, ... T,
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The Bootstrap Method

» Data and Model: » Quantity of Interest: 0 = G(F).
y=Weeeoyn) ~ Fly). » Estimator: 7 = g(y).
» Oracle: Suppose distribution of T = 79 — 7 is given.
If L/U are the 2.5/97.5% quantiles of T, then Cl for 1g is (7 + L, 7 + U).
» Bootstrap: Estimate L and U as follows:

1. Simulate M datasets ™ X F(y), each of size n, where F(y) is an estimate of
F(y)-

2. For each dataset, calculate 7™ = g(7'™) and T™ =7 — #(

m)
3. Let L/U be the 2.5/97% sample quantiles of T, ... TM)

— The Bootstrap Cl for 79 is given by (7 + L,7 4 U).

STAT 440/840 — CM 761: Computational Inference The Bootstrap Method 10/25



The Bootstrap Method

Real World Bootstrap World
Sampling Distribution | y ~ F(y) y~ A(y)
Quantity of Interest | 70 = G(F) 7 =g(y)
Estimator | 7 = g(y) 7 =g(¥y)
Pivotal Quantity | T =7 — 7 T=¢-%
Quantiles: | P(L< T < U) =95% P(L< T < U)=95%

95% Confidence Interval

Oracle: (7 + L, 7+ U)
Bootstrap: (+ 4 L,# + U)

Parallel between the Real world and the Bootstrap world.
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Example: Range of Uniform
» Objective: Given U = (Us,...,U,), U; S Unif(0, #), we wish to estimate 6.

» Simulation Study: Generate N = 1000 datasets with 6y = 1 and perform
calculations for each of the following settings:

2. Estimators: (i) MLE ; = max(U) and (i) Unbiased 0, = 2U (since E[U] = 0/2).
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Example: Range of Uniform
» Objective: Given U = (Us,...,U,), U; S Unif(0, #), we wish to estimate 6.

» Simulation Study: Generate N = 1000 datasets with 6y = 1 and perform
calculations for each of the following settings:

1. Sample Size: (i) n =100 and (ii) n = 10000

2. Estimators: (i) MLE ; = max(U) and (i) Unbiased 0, = 20U (since E[U] = 0/2).
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Example: Range of Uniform
» Objective: Given U = (Us,...,U,), U; S Unif(0, #), we wish to estimate 6.

» Simulation Study: Generate N = 1000 datasets with 6y = 1 and perform
calculations for each of the following settings:

1. Sample Size: (i) n =100 and (ii) n = 10000
2. Estimators: (i) MLE ; = max(U) and (i) Unbiased 0, = 20U (since E[U] = 0/2).

3. Bootstrap Sampling: (i) Nonparametric (U sampled with replacement) and (ii)
Parametric (Df’") o Unif(0,6)). Always use M = 1000 bootstrap samples.
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Example: Range of Uniform
» Objective: Given U = (Us,...,U,), U; S Unif(0, #), we wish to estimate 6.

» Simulation Study: Generate N = 1000 datasets with 6y = 1 and perform
calculations for each of the following settings:

1. Sample Size: (i) n =100 and (ii) n = 10000
2. Estimators: (i) MLE ; = max(U) and (i) Unbiased 0, = 20U (since E[U] = 0/2).

3. Bootstrap Sampling: (i) Nonparametric (U sampled with replacement) and (ii)
Parametric (U™ % Unif(0,0)). Always use M = 1000 bootstrap samples.

4. Confidence Intervals: (i) Basic Bootstrap: (0 + L, 8 —|— D)
(ii) Percentile Bootstrap 2.5/97.5% quantiles of ), ... ™ (seems simpler but...)
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Example: Range of Uniform
» Objective: Given U = (Uy,..., U,), U; ~ Unif(0,0), we wish to estimate 6.

iid

» Simulation Study: Generate N = 1000 datasets with 6y = 1 and perform
calculations for each of the following settings:

1.
2.

Sample Size: (i) n =100 and (ii) n = 10000
Estimators: (i) MLE 0; = max(U) and (i) Unbiased 0, = 2U (since E[U] = 6/2).

Bootstrap Sampling: (i) Nonparametric (U sampled with replacement) and (ii)

Parametric (Df’") o Unif(0,6)). Always use M = 1000 bootstrap samples.

Confidence Intervals: (i) Basic Bootstrap: (6 + L, + )
(ii) Percentile Bootstrap 2.5/97.5% quantiles of ), ... ™ (seems simpler but...)

Model Misspecification: True sampling distribution is U; ~ 6 x Beta(a, @), where
(i) @ =1 (Beta(1,1) = Unif(0,1)) and (ii) o = 2.
(0 is range of distribution, so still meaningfull quantity to estimate. For av # 1, 61 no longer

MLE, but 6, still unbiased.)
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Example: Range of Uniform
» Objective: Given U = (Uy,..., U,), U; ~ Unif(0,0), we wish to estimate 6.

iid

» Simulation Study: Generate N = 1000 datasets with 6y = 1 and perform
calculations for each of the following settings:

1.
2.

Sample Size: (i) n =100 and (ii) n = 10000
Estimators: (i) MLE 0; = max(U) and (i) Unbiased 0, = 2U (since E[U] = 6/2).

Bootstrap Sampling: (i) Nonparametric (U sampled with replacement) and (ii)

Parametric (Df’") o Unif(0,6)). Always use M = 1000 bootstrap samples.

Confidence Intervals: (i) Basic Bootstrap: (6 + L, + )
(ii) Percentile Bootstrap 2.5/97.5% quantiles of ), ... ™ (seems simpler but...)

Model Misspecification: True sampling distribution is U; ~ 6 x Beta(a, @), where
(i) @ =1 (Beta(1,1) = Unif(0,1)) and (ii) o = 2.
(0 is range of distribution, so still meaningfull quantity to estimate. For av # 1, 61 no longer

MLE, but 6, still unbiased.)

» Comparison Metrics: (i) True coverage of Cl and (ii) Average width of CI.
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Example: Range of Uniform

iid

» Objective: Given U = (Uy,..., U,), U; ~ Unif(0, §), wish to estimate 6.

» Simulation Study: For N = 1000 datasets with 6y = 1:

1.
2,

4,
5.

Sample Size: (i) n =100 and (ii) n = 10000

Estimators: (i) 61 = max(U) and (ii) 6, = 2U.

. Bootstrap Sampling: For M = 1000 bootstrap samples, sampling is

i. Nonparametric: U sampled with replacement.

Variance Reduction Use same fl(m) to calculate both égm) and égm).
= Monte Carlo difference between comparison metrics has same expectation, but
lower variance

. . ~ iid . A

ii. Parametric: U,.(m) ~ Unif(0, §).

Confidence Intervals: (i) Basic Bootstrap and (ii) Percentile Bootstrap.

Model Misspecification: U; K0 x Beta(a, @), where (i) @« =1 and (ii) a = 2.

» Comparison Metrics: (i) True coverage of Cl and (ii) Average width of Cl.
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Example: Range of Uniform
» Objective: Given U = (Uy,...,U,), U; e Unif(0, #), wish to estimate 6.
» Simulation Study: For N = 1000 datasets with 6y = 1:
1. Sample Size: (i) n = 100 and (ii) n = 10000
2. Estimators: (i) 1 = max(U) and (i) 6, = 20U.
3. Bootstrap Sampling: For M = 1000 bootstrap samples, sampling is
i. Nonparametric: U sampled with replacement.

)

Variance Reduction Use same U(m to calculate both égm) and égm).

ii. Parametric: Uf(m) K Unif(0, 6).
Variance Reduction Use same I":\’I.(m) e Unif(0, 1), and let Df(m) = ékl":\’i(m), k=1,2.
4. Confidence Intervals: (i) Basic Bootstrap and (ii) Percentile Bootstrap.
5. Model Misspecification: U; X0 x Beta(a, &), where (i) @« =1 and (ii) a = 2.
» Comparison Metrics: (i) True coverage of Cl and (ii) Average width of Cl.
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Example: Range of Uniform

Actual Coverage

Interval Width

alpha = 1 alpha = 1

NP_max NP_mean2 P_max P_mean2 NP_max NP_mean2 P_max P_mean2
basic_n=100 0.86 0.94 0.94 0.95 basic_n=100 0.03 0.22 0.04 0.22
basic_n=10K 0.89 0.95 0.95 0.94 basic_n=10K 0.00 0.02 0.00 0.02
pct_n=100 0.00 0.95 0.00 0.95 pct_n=100 0.03 0.22 0.04 0.22
pct_n=10K 0.00 0.95 0.00 0.95 pct_n=10K 0.00 0.02 0.00 0.02
alpha = 2 alpha = 2

NP_max NP_mean2 P_max P_mean2 NP_max NP_mean2 P_max P_mean2
basic_n=100 0.60 0.93 0.29 0.98 basic_n=100 0.07 0.17 0.03 0.22
basic_n=10K 0.57 0.95 0.00 0.98 basic_n=10K 0.01 0.02 0.00 0.02
pct_n=100 0.00 0.94 0.00 0.98 pct_n=100 0.07 0.17 0.03 0.22
pct_n=10K 0.00 0.95 0.00 0.99 pct_n=10K 0.01 0.02 0.00 0.02
Remarks:

(m)

1. Percentile Cl based on f; = max(U) has 0% coverage! This is because 6y > 6 > 0~1 , SO

quantiles of égm
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Example: Range of Uniform

Actual Coverage

Interval Width

alpha = 1 alpha = 1

NP_max NP_mean2 P_max P_mean2 NP_max NP_mean2 P_max P_mean2
basic_n=100 0.86 0.94 0.94 0.95 basic_n=100 0.03 0.22 0.04 0.22
basic_n=10K 0.89 0.95 0.95 0.94 basic_n=10K 0.00 0.02 0.00 0.02
pct_n=100 0.00 0.95 0.00 0.95 pct_n=100 0.03 0.22 0.04 0.22
pct_n=10K 0.00 0.95 0.00 0.95 pct_n=10K 0.00 0.02 0.00 0.02
alpha = 2 alpha = 2

NP_max NP_mean2 P_max P_mean2 NP_max NP_mean2 P_max P_mean2
basic_n=100 0.60 0.93 0.29 0.98 basic_n=100 0.07 0.17 0.03 0.22
basic_n=10K 0.57 0.95 0.00 0.98 basic_n=10K 0.01 0.02 0.00 0.02
pct_n=100 0.00 0.94 0.00 0.98 pct_n=100 0.07 0.17 0.03 0.22
pct_n=10K 0.00 0.95 0.00 0.99 pct_n=10K 0.01 0.02 0.00 0.02
Remarks:

2. NP bootstrap with Basic Cl does not approach 95% coverage as sample size n — oco! This

is because bootstrap only works if 6 and § have the same distribution as n — co. However,

61 ~ 6y x Beta(1, n) is a continuous distribution, but

Pr(fh =01)=1-Pr(f1 #01)=1-(1-1)" 51— 063

Therefore, él has a non-vanishing point mass at él, so doesn't get close to continuous

distribution of él.
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Example: Range of Uniform

Actual Coverage

Interval Width

alpha = 1 alpha = 1

NP_max NP_mean2 P_max P_mean2 NP_max NP_mean2 P_max P_mean2
basic_n=100 0.86 0.94 0.94 0.95 basic_n=100 0.03 0.22 0.04 0.22
basic_n=10K 0.89 0.95 0.95 0.94 basic_n=10K 0.00 0.02 0.00 0.02
pct_n=100 0.00 0.95 0.00 0.95 pct_n=100 0.03 0.22 0.04 0.22
pct_n=10K 0.00 0.95 0.00 0.95 pct_n=10K 0.00 0.02 0.00 0.02
alpha = 2 alpha = 2

NP_max NP_mean2 P_max P_mean2 NP_max NP_mean2 P_max P_mean2
basic_n=100 0.60 0.93 0.29 0.98 basic_n=100 0.07 0.17 0.03 0.22
basic_n=10K 0.57 0.95 0.00 0.98 basic_n=10K 0.01 0.02 0.00 0.02
pct_n=100 0.00 0.94 0.00 0.98 pct_n=100 0.07 0.17 0.03 0.22
pct_n=10K 0.00 0.95 0.00 0.99 pct_n=10K 0.01 0.02 0.00 0.02
Remarks:

3. NP-CI for §, have the right coverage, even under wrong model a = 2. On the other hand

P-Cl with 6, overcover under wrong model (98% instead of 95%).
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Actual Coverage

Example:

Range of Uniform

Interval Width

alpha = 1 alpha = 1

NP_max NP_mean2 P_max P_mean2 NP_max NP_mean2 P_max P_mean2
basic_n=100 0.86 0.94 0.94 0.95 basic_n=100 0.03 0.22 0.04 0.22
basic_n=10K 0.89 0.95 0.95 0.94 basic_n=10K 0.00 0.02 0.00 0.02
pct_n=100 0.00 0.95 0.00 0.95 pct_n=100 0.03 0.22 0.04 0.22
pct_n=10K 0.00 0.95 0.00 0.95 pct_n=10K 0.00 0.02 0.00 0.02
alpha = 2 alpha = 2

NP_max NP_mean2 P_max P_mean2 NP_max NP_mean2 P_max P_mean2
basic_n=100 0.60 0.93 0.29 0.98 basic_n=100 0.07 0.17 0.03 0.22
basic_n=10K 0.57 0.95 0.00 0.98 basic_n=10K 0.01 0.02 0.00 0.02
pct_n=100 0.00 0.94 0.00 0.98 pct_n=100 0.07 0.17 0.03 0.22
pct_n=10K 0.00 0.95 0.00 0.99 pct_n=10K 0.01 0.02 0.00 0.02
Remarks:

4. 6 does not converge to 0y under the wrong model o = 2, so Cl has poor coverage. On the

other hand, interval width is narrower than with @2, because max has less variance than

mean.
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Example: GARCH Stochastic Volatility Model

» SDE SV Model: Let (AX;, AV;) be the asset/volatility log-return/return
on day t. The basic SDE-SV model is

AX; = (a— Vo)At + V}/?ABy,
AV = —y(Vi — p)At + UVt1/2ABZt

» Pros: Excellent performance; easy to calibrate when V; is observed (e.g., VIX for
GSPCQ).

» Cons: Extremely difficult to calibrate when V; is latent, since £(@ | X) is not

available in closed-form, i.e,

5(0\X)ocp(xw):/p(x,vw)dv
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GARCH Stochastic Volatility Model

> SDE SV Model:
AX; = (a— Vo)At + V}?ABy,
AV, = —y(V; — p)At + o VP AB,,

» GARCH SV Model: Let ¢, = AX;. The GARCH(1,1) model is
Et = OtZ¢, Ztll\ch(O,l)
2 _ 2 2
of =w+tag;_; + for
» Like SDEs, volatility o: is stochastic.
» Pros: Inference with GARCH is far simpler than with SDE (closed-form likelihood).

» Cons: Unlike SDEs, GARCH is a discrete-time model (difficult for option pricing and

consistency across timescales)
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GARCH Stochastic Volatility Model

» Data: Asset values S = (Sp,...,Sy) = log-returns € = (e, ..

er = log(S¢/St-1).
> GARCH(1,1) Model: ee =0z, z S N(0,1)
o2 =w+ae? | + B0,

» Objective: On given day N, estimate the p-day forward 7-level
Value-At-Risk, i.e., the conditional quantile

., EN), with

Snip—S Snip—S
VaRT:qT(M|S,0> — Pr(%<VaRT|S,0>:T.

SN N

For example, we would say that the 10-day 5%-level VaR of AAPL is a 1.3%

drop in value.
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GARCH Model

» Model: Et = OtZt, z ~ N(0,1)
o2 =w+ag? |+ fo?

» Parameter Estimation:

» R Packages rugarch, fGarch. The former is more stable, the latter is faster.

Both can fit numerous extensions to the basic GARCH(1,1) model above.

» Profile Likelihood For 0 = (w, a, 8)

N
1 2
20| e)= 5 U—Z—i—log(a?), 0f =w+ agi_; + Bor_,
t=1 °
1 u g2
=5 g tloe(w-5), G =1+nga+ 85,
w - t
t=1

N N ~
where n = a/w = &(n,B) = thl(st/ot)Q.
(Note the technical issue of initializing 1 which we won't discuss here.)
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https://CRAN.R-project.org/package=rugarch
https://CRAN.R-project.org/package=fGarch

Value-at-Risk

» GARCH(1,1) Model: ee =0z, z S N(0,1)
o2 =w+ae? | + B0,
» Value-at-Risk:
Snip—S

S -5
VaR; = q- (% | S, 0) < Pr <57N < VaR: | S, 0) =T
N N

» 1-Day VaR: For given 6 and data € = (£1,...,en)
1. Let 03 = E[0} | 0] =w/(1 —a — B)
2. Use GARCH equation to obtain o}y, ; = w + aey + Boy
3. (Sn+1— Sn)/Sw = exp(en+1) — 1 = VaR; = exp{qnorm(7 | 0,0n41)} — 1

In other words, VaR, = VaR,(0 | €) is a function of @ (and observed data ¢).
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Value-at-Risk

> GARCH(1,1) Model: ce=0ze,  z S N(0,1)
of =w+ast_; + for_y
» 1-Day VaR: For given 0 and data € = (e1,...,en)
1. Let 0 = E[o? | 0] = w/(1 —a — B)
2. Use GARCH equation to obtain ojy,; = w + aey + Soy
3. (Sn+1 — Sn)/Sn = exp(en+1) — 1 = VaR, = exp{qnorm(r | 0,0n41)} — 1
In other words, VaR, = VaR,(0 | €).
» Inference: If O is the MLE of GARCH model, then
» MLE: Use plug-in principle: VaR, = VaR. (0 | ¢).

» Confidence Intervals?
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Delta-Method

» Data-Generating Process: Let Y7, Y5,... be some stochastic process

determined by a parameter 8 € R”

(In the simplest case, we have Y, i f(y | @), but the theory works for stationary processes

such as GARCH(1,1) as well).

» Asymptotic Normality: For Y., = (Yi,...,Y,), suppose the MLE and the
inverse Fisher Information
R R -1
O, =argmaxg (0 | Y1), Vo= |—2,0] ern)]

satisfy the usual asymptotic theory, i.e., \7,1,/2(9,, —60) = N(0,1,) as

n — oo, where 6 is the true parameter value.
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Delta-Method

Theorem: Let 8, be a sequence of estimators such that as n — co we have

V20, — 60) = N0, 1).

Suppose that 7 : RP — R is a continuously differentiable function with g < p,
and we wish to estimate 79 = 7(0g). Then as n — co we have

i:/2(+n - TO) - N(Oa I)v Tn= T(én)

3, =[VT(0,)] V. [VT(0,)].
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Delta-Method

Theorem: Let 8, be a sequence of estimators such that as n — oo we have
V20, — 06) — N(O, 1).

Suppose that 7 : RP — RY is a continuously differentiable function with g < p,
and we wish to estimate 79 = 7(60g). Then as n — oo we have

£ (Fa—r) 2 NOD),  #0=7(0)
, = [V7(8)] Vo[V (8]
Proof: The 1st order Taylor expansion of T(é,,) about 0 = 0y gives
7(6) — 7(60) = [V7(80)]' (81 — 6o).
Since 8, — 8y ~ N(0, V), by linearity of MVN we have
#0 =70 = N(0,[VT(00)]' V1 [V7(60)))-
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Delta-Method

» Theorem: If \A/:,/z(é,, —6g) — N(0,1) and 7 : R” — RY is a continuously
differentiable function with ¢ < p, then
£, (k0 - 10) S N, F0=7(8))
o= [VT(8,)] V,[VT(8,)].

M>
Il

» Upshot: If (A, V) are the MLE and its variance estimator, a confidence
interval for a 1D quantity of interest 7o = 7(6o) can be constructed via

#4196 s;, ? =7(8)
s =/ [VA@) V[Vr(9)].
Can use this to calculate Cl for 1-day VaR, = 7(6y) = VaR,(0q | €).
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Value-at-Risk
» GARCH(1,1) Model: ee =0z, z S N(0,1)
o = w+ag;_y + foi_
» Value-at-Risk:

Snip—S
VaRT:qT(%|S,0) — Pr(
N

Snip—S
2Nte 9N <VaRT|S,0) =T
Sn

No analytic solution for p > 1.
» Point Estimate: Use Monte Carlo:
1. For given @, analytically obtain o2, ..., 0%.
2. Generate M iid realizations of R = log(Sn+,/Sn) from p(R | en, on) using
GARCH. (Note that R = > " eny1)
3. The Monte Carlo approximation is VaR; = exp{§-(R | en,0)} — 1, where

4-(R | en, 0) is the T-level sample quantile of the iid realizations R, ... RM)

> Interval Estimate: Use Delta-Method, with VaR, = exp{&-(R | en,0)} — 1,

. . S (m) (m)
but with variance reduction, i.e., same Zny1 o ZNp for every value of 6.
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Value-at-Risk

» GARCH(1,1) Model: ce =0z, z S N(0,1)
of =w+agt_y + for_y
» Value-at-Risk:

Snip—S Snip—S
VaR; = gr (% | s,e) — Pr (% < VaR; | s,e) _
N N

» Point/Interval Estimate: Monte Carlo + Delta Method

» Model Misspecification: Suppose we have GARCH(1,1), but with
2. %S F(z) with F # N(0,1)?

» Residual Bootstrap:
» GARCH model: &; = oz, ol =w+ael |+ B,
> Use 6 to calculate & = (61,...,6n) and residuals 2 = (21,...,2y) = €/6.
» Obtain Bootstrap residuals Z by sampling with replacement from z

» Bootstrap log-returns: &; = &%, ol =0+a+E  + B&f,l
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