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Exponential Families
I Definition: If Y ∼ f (y |θ), θ ∈ Rd , then Y is said to belong to an

exponential family if

f (y |θ) = exp
{

T ′η −Ψ(η)
}
· h(y),

where

I η = η(θ) ∈ Rd are the natural parameters.

(η must have the same dimension as θ for upcoming results to hold.)

I T = T (y) are the sufficient statistics.

I Ψ(η) is called the log-partition function, or sometimes the cumulant-generating
function.

I Natural Parametrization: Since each value of θ defines a different PDF,
η(θ) must be a bijection. Therefore, we might as well parametrize the
exponential family by η, in which case f (y |η) is said to be in its canonical
form.
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Examples
Binomial Distribution

Y ∼ Binomial(n, ρ) =⇒

p(y | ρ) =
(

n
y

)
ρy (1− ρ)n−y

= exp

y · log
(

ρ

1− ρ

)
︸ ︷︷ ︸

η

− [−n log(1− ρ)]︸ ︷︷ ︸
Ψ(η)

 ·
(

n
y

)
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Examples
Multivariate Normal Distribution

Y ∼ N (µ,Σ) =⇒

f (y |µ,Σ) = exp
{
−1
2 (y − µ)′Σ−1(y − µ)− 1

2 log |Σ|
}
· h(y)︸︷︷︸

(2π)d/2

= exp

−1
2

[
tr(Σ−1yy ′)︸ ︷︷ ︸

vec(Σ−1)′ vec(yy′)

−2y ′[Σ−1µ] + µ′Σ−1µ + log |Σ|
] h(y)

=⇒

T = (− 1
2yy ′, y), η = (Σ−1,Σ−1µ), Ψ(η) = −1

2 (µ′Σ−1µ + log |Σ|).

(Some redundancy since yy ′ and Σ−1 are symmetric matrices, but formulas get complicated)
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Examples

I Model: Y ∼ f (y |η) = exp{T ′η −Ψ(η)}h(y), T = T (y).

I Exponential families:

Poisson, Gamma (and Exponential), Multinomial (and Binomial),
Negative-Binomial (and Geometric), Dirichlet (and Beta), Wishart (and

Chi-Square).

I Not Exponential families:

Student-t (and Cauchy), Weibull, Unif(0, θ).
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Moments of Sufficient Statistics

I Exponential Family: Y ∼ f (y |η) = exp{T ′η −Ψ(η)}h(y), T = T (y).

I Expectation of T :

(since RHS is a PDF) 1 =
∫

exp{T ′η −Ψ(η)}h(y) dy

(take ∂
∂η on both sides) 0 = ∂

∂η

∫
exp{T ′η −Ψ(η)}h(y) dy

=
∫

∂

∂η
exp{T ′η −Ψ(η)}h(y) dy

=
∫

[T −∇Ψ(η)]f (y |η) dy∫
T · f (y |η) dy︸ ︷︷ ︸

=E [T |η]

= ∇Ψ(η)
∫

f (y |η) dy︸ ︷︷ ︸
=1

=⇒ E [T |η] = ∇Ψ(η).
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Moments of Sufficient Statistics

I Exponential Family: Y ∼ f (y |η) = exp{T ′η −Ψ(η)}h(y), T = T (y).

I Variance of T :

1 =
∫

exp{T ′η −Ψ(η)}h(y) dy

0 = ∂

∂η

∫
exp{T ′η −Ψ(η)}h(y) dy

=
∫

[T −∇Ψ(η)]f (y |η) dy

(take ∂
∂η on both sides again) =

∫
∂

∂η
[T −∇Ψ(η)]f (y |η) dy

∇2Ψ(η)
∫

f (y |η) dy =
∫

[T −∇Ψ(η)︸ ︷︷ ︸
E [T |η]

][T −∇Ψ(η)]′f (y |η) dy

=⇒ var[T |η] = ∇2Ψ(η) =⇒ ∇2Ψ(η) is positive definite.
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Inference

I Data: Y = (Y 1, . . . ,Y n), Y i
iid∼ exp{T ′η −Ψ(η)}h(y).

I Loglikelihood: `(η |Y ) = n[T̄ ′η −Ψ(η)], where T̄ = 1
n
∑n

i=1 T (Y i ).

I Score function: ∇`(η |Y ) = n[T̄ −∇Ψ(η)]

=⇒ MLE satisfies ∇Ψ(η̂) = T̄ .

I Expected Fisher Information:

I(η) = E [−∇2`(η |Y )] = n E [∇2Ψ(η)] = n∇2Ψ(η).

=⇒ Asymptotic theory η̂ ≈ N (η0,I(η0)−1) is more effectively applied in
practice since Observed Fisher Information is Î = I(η̂) = n∇2Ψ(η).

(usually expectation can’t be calculated analytically)

I Question: How to compute MLE η̂?
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Newton-Raphson Method

I Problem: Find a minimum of f : Rd → R.

I Quadratic case: f (x) = x ′Ax − 2b′x + c, with Adxd is positive definite.

(Using Cholesky A = LL′, show that A−1 exists and is +ve definite)

I Multivariate complete-the-square:

f (x) = x ′Ax − 2 b′A−1︸ ︷︷ ︸
µ′

Ax + c

= (x − µ)′A(x − µ)︸ ︷︷ ︸
x′Ax−2µ′x+µ′Aµ

−µ′Aµ + c,

=⇒ Unique minimum of f (x) is x = A−1b.
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Newton-Raphson Method

I Problem: Find a minimum of f : Rd → R.

I Non-Quadratic case: Iterative method.

I Initial guess: x0

I Iterations: At step n + 1, find 2nd order Taylor expansion of f (x) around x = xn:

f (x) ≈ f (xn) + g ′n︸︷︷︸
∇f (xn)′

(x − xn) + 1
2 (x − xn)′ Hn︸︷︷︸

∇2f (xn)

(x − xn)

= 1
2
[
x ′Hnx − 2(Hnxn − gn)′x

]
+ const

= 1
2 (x − µ)′Hn(x − µ) + const, µ = H−1n (−gn + Hnxn)

= xn −H−1n gn.

=⇒ Let xn+1 = xn −H−1n gn = xn − [∇2f (xn)]−1∇f (xn). where typically
1
10 ≤ C ≤ 1 (compromise between relative and absolute error).
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I Problem: Find a minimum of f : Rd → R.

I Non-Quadratic case: Iterative method.

I Initial guess: x0

I Iterations: xn+1 = xn − [∇2f (xn)]−1∇f (xn).

I Stopping Condition: Algorithm terminates when Nmax steps have been reached
(perhaps without convergence), or when

max
1≤i≤d

|xn,i − xn−1,i |
C + |xn,i + xn−1,i |

< ε,

where typically 1
10 ≤ C ≤ 1 (compromise between relative and absolute error).
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Convex Functions
Newton-Raphson algorithm fails in all sorts of situations, but works relatively well
when f (x) is a convex function:

f (ρ · x1 + (1− ρ) · x2) ≤ ρ · f (x1) + (1− ρ) · f (x2),

∀ x1, x2 and ρ ∈ (0, 1).

f (x) is strictly convex if “≤” is replaced by “<”. Examples of convex functions:
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Convex Functions

I Definition: f (ρ · x1 + (1− ρ) · x2) ≤ ρ · f (x1) + (1− ρ) · f (x2),

∀ x1, x2 and ρ ∈ (0, 1). Strictly convex if “≤” is replaced by “<”.

I Properties:

1. If ∇2f (x) is positive definite then f (x) is strictly convex.

2. Sum of convex functions is convex.

3. f , g convex and ∇g(x) ≥ 0 =⇒ h(x) = g(f (x)) convex.

4. f (x) (strictly) convex =⇒ f (Ax + b) (strictly) convex.

5. If f (x) is convex and x0 is a local minimum of f , then x0 is a global minimum.

6. If f (x) is strictly convex, then it has either a unique global minimum or no
minimum at all.
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Convex Functions
Application to Exponential Families

I Data: Y = (Y 1, . . . ,Y n), Y i
iid∼ exp{T ′η −Ψ(η)}h(y).

I Loglikelihood: `(η |Y ) = n[T̄ ′η −Ψ(η)], T̄ = 1
n
∑n

i=1 T (Y i ).

I Expected Fisher-Information: If η is the true parameter value, then

I(η) = −∇2`(η |Y ) = n∇2Ψ(η) = var(T |η)−1.

Therefore:

I −`(η |Y ) is a strictly convex function.

I If the MLE η̂ exists, then it is unique.

I Newton-Raphson is well-suited to find η̂. The NR updates are given by

ηn+1 = ηn + [∇2Ψ(ηn)]−1[T̄ −∇Ψ(ηn)].
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Application
Generalized Linear Models

I Model:
yi | x i

ind∼ exp{Tiηi −Ψ(ηi )}h(yi ), ηi = x ′iβ.

I Loglikelihood:

`(β | y ,X) =
n∑

i=1
Tix ′iβ −Ψ(x ′iβ)

I Hessian:
∂2

∂β2 `(β | y ,X) = −X ′
[
Ψ(2)(Xβ)

]
X , where

Ψ(2)(η) = d2
dη2 Ψ(η), Ψ(2)(Xβ) = diag

(
Ψ(2)(x ′1β), . . . ,Ψ(2)(x ′nβ)

)
.

=⇒ −`(β | y ,X) is strictly convex since X ′
[
Ψ(2)(Xβ)

]
X = var(X ′z), where

var(z) = Ψ(2)(x ′i β).

STAT 440/840 – CM 761: Computational Inference Exponential Families 14 / 24



GLM: Common Cases
1. Poisson Regression (for count data)

I Model: yi | x i
ind∼ Poisson(λi ), λi = exp(x ′iβ).

=⇒ E [y | x] = exp(x ′β).

I Log-Likelihood:

`(β | y ,X) =
n∑

i=1
yi · x ′iβ − exp(x ′iβ)

I R command:

M <- glm(y ~ x1 + x2, family = "poisson")
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GLM: Common Cases
2. Binomial Regression (for success/failure data)

I Model: yi | x i ,Ni
ind∼ Binomial(Ni , ρi ),

ρi = 1
1 + exp(−x ′iβ) ⇐⇒ x ′iβ = log

(
ρi

1− ρi

)
= logit(ρi ).

I Log-Likelihood:

`(β | y ,X) =
n∑

i=1
yi log

(
ρi

1− ρi

)
+ Ni log(1− ρi )

=
n∑

i=1
yix ′iβ − Ni log

{
1 + exp(x ′iβ)

}
I Logistic Regression: Special name for the common case where Ni ≡ 1.
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Logistic Regression
Example

I Model: yi | x i
ind∼ Bernoulli(ρi ), ρi = [1 + exp(−x ′iβ)]−1.

I Titanic Data: 4-way contingency table of the n = 2201 passengers on the
Titanic in the following categories:

I Class ∈ {1st, 2nd, 3rd, Crew}.
I Sex ∈ {Male, Female}.
I Age ∈ {Child, Adult}.
I Survived ∈ {No, Yes}.
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Application of GLM/NR
Heteroscedastic Linear Regression

I Usual Linear Regression: yi | x i
ind∼ N (x ′iβ, σ2).

Model has homoscedastic errors: var(y | x) ≡ σ2 is constant.

I Heteroscedastic Linear Regression:

yi | x i
ind∼ N (x ′iβ, σ2i ), σi = σ(x i ),

such that var(y | x) = σ2(x) is not constant (depends on x).
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Application of GLM/NR
Heteroscedastic Linear Regression

I Model: (ignore mean term for now)

yi | x i
ind∼ N (0, σ2i ), σ2i = exp(x ′iβ).

I Log-Likelihood:

`(β | y ,X) = −1
2

n∑
i=1

y2
i

exp(x ′iβ) + x ′iβ.

I Convexity:

Let g(η) = a · exp(η) + η, for η ∈ R, a > 0.

=⇒ d2
dη2 g(η) = a · exp(η) > 0 =⇒ g(η) is convex.

=⇒ −`(β | y ,X) =
∑n

i=1 g(x ′iβ) is also convex.
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Heteroscedastic Linear Regression

I Simplified Model: yi | x i
ind∼ N

(
0, exp(x ′iβ)

)
=⇒

y2
i | x i

ind∼ Gamma
( 1
2 , 2µi

)︸ ︷︷ ︸
µi ·χ2

(1)

, µi = exp(x ′iβ).

I Gamma parametrization:

z ∼ Gamma(α, λ) =⇒ E [Y ] = αλ

var(Y ) = αλ2.

I Gamma Regression:

zi | x i
ind∼ Gamma(1/τ, τµi ), µi = g−1(x ′iβ)

=⇒ E [z | x] = g−1(x ′β), var(z | x) = τ · E [z | x]2

I g(µ): Link function.

I τ : Dispersion parameter.
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Gamma Regression

I Model: zi | x i
ind∼ Gamma(1/τ, τµi ), µi = g−1(x ′iβ).

I Log-Likelihood:

`(β, τ | z,X) =
n∑

i=1

[
log g−1(x ′i β)− zi/g−1(x ′i β)

τ

]
− n log Γ(1/τ) +

n∑
i=1

log(zi )
τ

I Properties:

I `(β, τ | z,X) convex if µ(x) = exp(x ′β).

I β̂ = arg maxβ `(β, τ | z,X) doesn’t depend on τ .

I Two independent convex problems:

(i) find β̂, then (ii) find τ̂ = arg maxτ `(β̂, τ | z,X).

I R Command: glm(z ~ X, family = Gamma("log"))
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Heteroscedastic Linear Regression
I Full Model:

yi | x i ,w i
ind∼ N

(
x ′iβ, exp(w ′iγ)

)
.

Can think of x and w as subsets of a single set of covariates X , e.g.,

x = (Age,Height,Weight), w = (log(Age),Height/Weight).

I Maximum Likelihood Estimation:

I Initial Value: β0 = (X ′X)−1X ′y , γ0 = 0.

I Iterative fitting: Given (βn,γn),

I βn+1 = (X ′ΛnX)−1X ′Λny , Λn =
[

exp(−w′1γ)
...

exp(−w′nγ)

]
.

This is just MLE of β for yi
ind∼ N

(
x′i β, exp(w ′i γn)

)
.

I γn+1 = coef(glm(un+12 ∼W, family = Gamma("log"))), un+1 = y−Xβn+1.

This is just MLE of γ for u2
i,n+1

ind∼ Gamma
(
1, exp(w ′i γ)

)
.
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Heteroscedastic Linear Regression
Example

I Model: yi | x i ,w i
ind∼ N

(
x ′iβ, exp(w ′iγ)

)
.

I SENIC Dataset: Study on the Efficiency of Nosocomial Infection Control
(SENIC). n = 113 US hospitals with following measurements:

I length: Average length of stay of patients in days.
I age: Average age of patients.
I inf: Probability of acquiring infection in hospital.
I cult: Culturing ratio, i.e. 100× cultures performed

# of patients with no infection .
I xray: Chest X-ray ratio (defined as above).
I beds: Number of beds.
I school: Medical school affiliation (1 = no, 2 = yes).
I region: US geographic region (1 = NC, 2 = NE, 3 = S, 4 = W).
I pat: Number of patients.
I nurs: Number of nurses.
I serv: Available facilities (at given hospital).
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More Resources

I Useful R functions for lm, glm and other regression models (e.g., in package
survival): coef, vcov, confint, predict, fitted, residuals, summary,
effects, formula.

I Article by Carl Morris (1982) on Exponential Families with so-called
“quadratic variance functions” (easy to read and considered a great
breakthrough in statistical theory).

I Simplified version by Morris & Lock (2009) with a nice figure relating the
different EF distributions.

I hlm: Efficient implementation of the heteroskedastic linear regression model
(HLM).
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http://projecteuclid.org/download/pdf_1/euclid.aos/1176345690
http://php.scripts.psu.edu/users/k/l/klm47/MorrisLock2009.pdf
https://github.com/mlysy/hlm

