Review: The Multivariate Normal Distribution

version: 2020-01-07 · 10:58:30

The Multivariate Normal Distribution

▶ **Definition:** $X = (X_1, ..., X_d)$ is multivariate normal if and only if it a linear combination of iid normals:

$$\mathbf{Z} = \mathbf{C}\mathbf{Z} + \boldsymbol{\mu}, \qquad \qquad \mathbf{Z} = (Z_1, \dots, Z_d), \quad Z_i \stackrel{\mathsf{iid}}{\sim} \mathcal{N}(0, 1).$$

- ► Mean and Variance:
 - \triangleright $E[X] = CE[Z] + \mu = \mu$
 - ightharpoonup var $(m{X})=m{C}$ var $(m{Z})m{C}'=m{C}m{C}':=m{\Sigma}$ (many different $m{C}$ give the same variance)
- ▶ Notation: $X \sim \mathcal{N}(\mu, \Sigma)$
- ► PDF:

$$f(\mathbf{x}) = (2\pi)^{-d/2} \cdot \exp\left\{-\frac{1}{2}(\mathbf{x} - \boldsymbol{\mu})' \mathbf{\Sigma}^{-1}(\mathbf{x} - \boldsymbol{\mu}) - \frac{1}{2} \log|\mathbf{\Sigma}|\right\}$$

Simulation

- ▶ To generate $X \sim \mathcal{N}(\mu, \Sigma)$:
 - 1. Find C such that $CC' = \Sigma$.
 - **2.** Generate $\mathbf{Z} = (Z_1, \dots, Z_d)$ with $Z_i \sim \mathcal{N}(0, 1)$.
 - 3. Set $X = CZ + \mu$.
- ► To find *C*:
 - Note that Σ is (i) symmetric and (ii) positive definite: for any vector \mathbf{a} we have $\mathbf{a}'\Sigma\mathbf{a}>0$, with equality $\iff \mathbf{a}=0$.
 - **Every symmetric positive-definite matrix has a Cholesky definition:** $\Sigma = LL'$, where L is lower triangular and all diagonal elements $L_{ii} > 0$.
 - ► Properties:
 - ► The eigenvalues of triangular matrices are the diagonal elements $\Rightarrow |\mathbf{\Sigma}| = \prod_{i=1}^{d} L_{ii}^{2}$.
 - ▶ $\Sigma^{-1}x = (L')^{-1}(L^{-1}x)$. Solving linear systems with triangular matrices is $\mathcal{O}(d)$, as opposed to $\mathcal{O}(d^3)$ for general matrices.

Conditional Distribution

▶ Block Notation:

$$\begin{bmatrix} \boldsymbol{X}_1 \\ \boldsymbol{X}_2 \end{bmatrix} \sim \mathcal{N} \left\{ \begin{bmatrix} \boldsymbol{\mu}_1 \\ \boldsymbol{\mu}_2 \end{bmatrix}, \begin{bmatrix} \boldsymbol{\Sigma}_{11} & \boldsymbol{\Sigma}_{12} \\ \boldsymbol{\Sigma}_{21} & \boldsymbol{\Sigma}_{22} \end{bmatrix} \right\}$$

- ▶ Marginal Distribution: $m{X}_1 \sim \mathcal{N}(m{\mu}_1, m{\Sigma}_1)$
- ► Conditional Distribution:

$$egin{aligned} m{\mathcal{X}}_2 \, | \, m{\mathcal{X}}_1 \sim \mathcal{N}m{\left(\mu_2^{\star}, m{\Sigma}_2^{\star}
ight)}, & m{\mu}_2^{\star} &= m{\mu}_2 + m{\Sigma}_{21}m{\Sigma}_{11}^{-1} (m{\mathcal{X}}_1 - m{\mu}_1) \ m{\Sigma}_2^{\star} &= m{\Sigma}_{22} - m{\Sigma}_{21}m{\Sigma}_{11}^{-1}m{\Sigma}_{12}. \end{aligned}$$

▶ Verify Calculations: $f(x_1, x_2) = f(x_1) \times f(x_2 | x_1)$ for any pair (x_1, x_2) .

Can do this analytically (harder) or computationally (easier)

Parameter Inference

- ▶ Data: $X = (X_1, ..., X_n), X_i \stackrel{\text{iid}}{\sim} \mathcal{N}(\mu, \Sigma).$
- ► Loglikelihood function:

$$\ell(\boldsymbol{\mu}, \boldsymbol{\Sigma} \,|\, \boldsymbol{X}) = \log \prod_{i=1}^n f(\boldsymbol{X}_i \,|\, \boldsymbol{\mu}, \boldsymbol{\Sigma}) - \{\text{terms not involving } \boldsymbol{\mu} \text{ or } \boldsymbol{\Sigma}\}$$

$$= -\frac{1}{2} \Big\{ n \log |\boldsymbol{\Sigma}| + \sum_{i=1}^n (\boldsymbol{X}_i - \boldsymbol{\mu})' \boldsymbol{\Sigma}^{-1} (\boldsymbol{X}_i - \boldsymbol{\mu}) \Big\}$$

$$= -\frac{1}{2} \Big\{ n \log |\boldsymbol{\Sigma}| + \text{tr}(\boldsymbol{\Sigma}^{-1} \boldsymbol{S}) + n(\bar{\boldsymbol{X}} - \boldsymbol{\mu})' \boldsymbol{\Sigma}^{-1} (\bar{\boldsymbol{X}} - \boldsymbol{\mu}) \Big\},$$
ere
$$\bar{\boldsymbol{X}} = \frac{1}{n} \sum_{i=1}^n \boldsymbol{X}_i, \qquad \boldsymbol{S}_{d \times d} = \sum_{i=1}^n (\boldsymbol{X}_i - \bar{\boldsymbol{X}}) (\boldsymbol{X}_i - \bar{\boldsymbol{X}})'$$

▶ MLE:
$$\hat{\boldsymbol{\mu}} = \bar{\boldsymbol{X}}$$
 and $\hat{\boldsymbol{\Sigma}} = \boldsymbol{S}/n$.

Parameter Inference

- ▶ Data: $X = (X_1, ..., X_n)$, $X_i \stackrel{\text{iid}}{\sim} \mathcal{N}(u, \Sigma)$.
- ► Loglikelihood function:

$$\ell(\boldsymbol{\mu}, \boldsymbol{\Sigma} \mid \boldsymbol{X}) = -\frac{1}{2} \Big\{ n \log |\boldsymbol{\Sigma}| + \operatorname{tr}(\boldsymbol{\Sigma}^{-1}\boldsymbol{S}) + n(\bar{\boldsymbol{X}} - \boldsymbol{\mu})' \boldsymbol{\Sigma}^{-1}(\bar{\boldsymbol{X}} - \boldsymbol{\mu}) \Big\},$$

$$\operatorname{re} \quad \bar{\boldsymbol{X}} = \frac{1}{2} \sum_{i=1}^{n} \boldsymbol{X}_{i}, \qquad \boldsymbol{S}_{d \times d} = \sum_{i=1}^{n} (\boldsymbol{X}_{i} - \bar{\boldsymbol{X}})(\boldsymbol{X}_{i} - \bar{\boldsymbol{X}})'$$

Verify Calculations: Can do this analytically (harder) or computationally

Check that

(easier):

$$\ell(\boldsymbol{\mu}, \boldsymbol{\Sigma} \mid \boldsymbol{X}) = \log f(\boldsymbol{X} \mid \boldsymbol{\mu}, \boldsymbol{\Sigma}) + \text{CONST}$$

for fixed **X** and varying (μ, Σ)

Parameter Inference

- ▶ Data: $X = (X_1, ..., X_n), X_i \stackrel{\text{iid}}{\sim} \mathcal{N}(\mu, \Sigma).$
- ightharpoonup MLE: $\hat{m{\mu}}=ar{m{X}}$ and $\hat{m{\Sigma}}=m{S}/n$,

where
$$ar{m{X}} = rac{1}{n} \sum_{i=1}^n m{X}_i, \qquad m{S}_{d \times d} = \sum_{i=1}^n (m{X}_i - ar{m{X}})(m{X}_i - ar{m{X}})^T$$

- ► Verify Calculations: Can do this analytically (harder) or computationally (easier):
 - ► For differentiable loglikelihood $\ell(\theta \mid X)$ with $\theta = (\theta_1, \dots, \theta_p)$, each component of MLE is the maximum of a 1-d function:

$$\hat{\boldsymbol{\theta}} = \arg\max_{\boldsymbol{\theta}} \ell(\boldsymbol{\theta} \,|\, \boldsymbol{X}) \implies \hat{\theta}_i = \arg\max_{\boldsymbol{\theta}_i} \ell(\boldsymbol{\theta}_i, \hat{\boldsymbol{\theta}}_{[-i]} \,|\, \boldsymbol{X}),$$

where $\hat{m{ heta}}_{[-i]} = \hat{m{ heta}} \setminus \{\hat{ heta}_i\}.$

Converse is false (as $\hat{\theta}$ could be a saddlepoint). However, loglikelihoods are generally well-behaved, so if $\hat{\theta}_i = \arg\max_{\theta_i} \ell(\theta_i, \hat{\theta}_{[-i]} \mid \mathbf{X})$ for $i = 1, \dots, p$, then very likely that $\hat{\theta}$ is the MLE.

Applications

1. Confidence Intervals

- ▶ Model: $Y_1, \ldots, Y_n \stackrel{\text{iid}}{\sim} f(y \mid \theta), \qquad \theta = (\theta_1, \ldots, \theta_d).$
- ▶ MLE: $\hat{\boldsymbol{\theta}} = \arg \max_{\boldsymbol{\theta}} \ell(\boldsymbol{\theta} \mid \boldsymbol{Y}), \qquad \ell(\boldsymbol{\theta} \mid \boldsymbol{Y}) = \sum_{i=1}^{n} \log f(Y_i \mid \boldsymbol{\theta}).$
- ▶ **Asymptotic Theory:** As $n \to \infty$, we have

$$\hat{oldsymbol{ heta}} pprox \mathcal{N}ig(oldsymbol{ heta}_0, oldsymbol{\mathcal{I}}_0^{-1}ig), \qquad ext{where}$$

- $ightharpoonup heta_0$ is the true parameter value
- $ightharpoonup \mathcal{I}_0$ is the (expected) Fisher Information:

$$\mathcal{I}_{0} = -E\left[\frac{\partial^{2}}{\partial \boldsymbol{\theta}^{2}}\ell(\boldsymbol{\theta}_{0} \mid \mathbf{Y})\right] = -n\int\left[\frac{\partial^{2}}{\partial \boldsymbol{\theta}^{2}}\log f(y \mid \boldsymbol{\theta}_{0})\right] \cdot f(y \mid \boldsymbol{\theta}_{0}) dy$$

Applications

1. Confidence Intervals

- ▶ Model: $Y_1, ..., Y_n \stackrel{\text{iid}}{\sim} f(y \mid \theta)$
- ▶ Asymptotic Theory: As $n \to \infty$, we have $\hat{\theta} \approx \mathcal{N}(\theta_0, \mathcal{I}_0^{-1})$, where
 - \triangleright θ_0 is the true parameter value
 - $ightharpoonup \mathcal{I}_0 = -E\left[rac{\partial^2}{\partial heta^2} \ell(heta_0 \,|\, extbf{Y})
 ight]$ is the (expected) Fisher Information.

Typically \mathcal{I}_0 is impossible to calculate because (i) expectation is usually intractable and (ii) true θ_0 is unknown.

Observed Fisher Information is a consistent estimator: $\hat{\mathcal{I}} = -\frac{\partial^2}{\partial \theta^2} \ell(\hat{\theta} \mid \mathbf{Y}) \stackrel{n}{ o} \mathcal{I}_0$

▶ Asymptotic Confidence Intervals: 95% CI for each element of θ :

$$\hat{ heta}_i \pm 1.96 \cdot \mathsf{se}(\hat{ heta}_i), \qquad \mathsf{se}(\hat{ heta}_i) = \sqrt{[\hat{\mathcal{I}}^{-1}]_{ii}}.$$

Such CI's are often valid even without iid data.

Applications

2. Linear Regression

- ► Model: $\mathbf{y} \sim \mathcal{N}(\mathbf{X}\boldsymbol{\beta}, \sigma^2 \mathbf{V})$, where
 - $y = (y_1, ..., y_n)$ is multivariate normal (random)
 - ▶ $X_{n \times p}$ and $V_{n \times n}$ are known (nonrandom)
 - $\beta = (\beta_1, \dots, \beta_p)$ and σ are unknown (parameters)
- ► Loglikelihood:

$$\begin{split} \ell(\boldsymbol{\beta}, \boldsymbol{\sigma} \,|\, \boldsymbol{y}) &= -\frac{1}{2} \Big\{ (\boldsymbol{y} - \boldsymbol{X} \boldsymbol{\beta})' [\boldsymbol{\sigma}^2 \boldsymbol{V}]^{-1} (\boldsymbol{y} - \boldsymbol{X} \boldsymbol{\beta}) + \log |\boldsymbol{\sigma}^2 \boldsymbol{V}| \Big\} \\ &= -\frac{1}{2} \left\{ \frac{(\boldsymbol{\beta} - \hat{\boldsymbol{\beta}})' \boldsymbol{X}' \, \boldsymbol{V}^{-1} \boldsymbol{X} (\boldsymbol{\beta} - \hat{\boldsymbol{\beta}}) + n \hat{\boldsymbol{\sigma}}^2}{\boldsymbol{\sigma}^2} + n \log \boldsymbol{\sigma}^2 \right\}, \end{split}$$

where $\hat{\boldsymbol{\beta}} = (\boldsymbol{X}'\boldsymbol{V}^{-1}\boldsymbol{X})^{-1}\boldsymbol{X}'\boldsymbol{V}^{-1}\boldsymbol{y}$ and $\hat{\sigma}^2 = \frac{1}{n}(\boldsymbol{y} - \boldsymbol{X}\hat{\boldsymbol{\beta}})'\boldsymbol{V}^{-1}(\boldsymbol{y} - \boldsymbol{X}\hat{\boldsymbol{\beta}})$.

▶ Inference: The MLE of $\theta = (\beta, \sigma)$ is $\hat{\theta} = (\hat{\beta}, \hat{\sigma})$.