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The Multivariate Normal Distribution

I Definition: X = (X1, . . . ,Xd ) is multivariate normal if and only if it a linear
combination of iid normals:

X = CZ + µ, Z = (Z1, . . . ,Zd ), Zi
iid∼ N (0, 1).

I Mean and Variance:

I E [X] = C E [Z ] + µ = µ

I var(X) = C var(Z)C ′ = CC ′ := Σ (many different C give the same variance)

I Notation: X ∼ N (µ,Σ)

I PDF:

f (x) = (2π)−d/2 · exp
{
− 1

2 (x − µ)′Σ−1(x − µ)− 1
2 log|Σ|

}
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Simulation
I To generate X ∼ N (µ,Σ):

1. Find C such that CC ′ = Σ.

2. Generate Z = (Z1, . . . ,Zd) with Zi ∼ N (0, 1).

3. Set X = CZ + µ.

I To find C :

I Note that Σ is (i) symmetric and (ii) positive definite: for any vector a we have
a′Σa ≥ 0, with equality ⇐⇒ a = 0.

I Every symmetric positive-definite matrix has a Cholesky definition: Σ = LL′,
where L is lower triangular and all diagonal elements Lii > 0.

I Properties:

I The eigenvalues of triangular matrices are the diagonal elements
=⇒ |Σ| =

∏d
i=1 L2

ii .

I Σ−1x = (L′)−1(L−1x). Solving linear systems with triangular matrices is O(d), as
opposed to O(d3) for general matrices.
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Conditional Distribution

I Block Notation: [
X1

X2

]
∼ N

{[
µ1
µ2

]
,

[
Σ11 Σ12

Σ21 Σ22

]}

I Marginal Distribution: X1 ∼ N (µ1,Σ1)

I Conditional Distribution:

X2 |X1 ∼ N (µ?
2 ,Σ

?
2), µ?

2 = µ2 + Σ21Σ−111 (X1 − µ1)

Σ?
2 = Σ22 −Σ21Σ−111 Σ12.

I Verify Calculations: f (x1, x2) = f (x1)× f (x2 | x1) for any pair (x1, x2).

Can do this analytically (harder) or computationally (easier)
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Parameter Inference

I Data: X = (X1, . . . ,Xn), X i
iid∼ N (µ,Σ).

I Loglikelihood function:

`(µ,Σ |X) = log
n∏

i=1
f (X i |µ,Σ)− {terms not involving µ or Σ}

= −1
2

{
n log |Σ|+

∑n
i=1(X i − µ)′Σ−1(X i − µ)

}
= −1

2

{
n log |Σ|+ tr(Σ−1S) + n(X̄ − µ)′Σ−1(X̄ − µ)

}
,

where X̄ = 1
n
∑n

i=1 X i , Sd×d =
∑n

i=1(X i − X̄)(X i − X̄)′

I MLE: µ̂ = X̄ and Σ̂ = S/n.

STAT 440/840 – CM 761: Computational Inference The Multivariate Normal 5 / 10



Parameter Inference

I Data: X = (X1, . . . ,Xn), X i
iid∼ N (µ,Σ).

I Loglikelihood function:

`(µ,Σ |X) = −1
2

{
n log |Σ|+ tr(Σ−1S) + n(X̄ − µ)′Σ−1(X̄ − µ)

}
,

where X̄ = 1
n
∑n

i=1 X i , Sd×d =
∑n

i=1(X i − X̄)(X i − X̄)′

I Verify Calculations: Can do this analytically (harder) or computationally
(easier):

I Check that
`(µ,Σ |X) = log f (X |µ,Σ) + CONST

for fixed X and varying (µ,Σ)
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Parameter Inference
I Data: X = (X1, . . . ,Xn), X i

iid∼ N (µ,Σ).

I MLE: µ̂ = X̄ and Σ̂ = S/n,

where X̄ = 1
n
∑n

i=1 X i , Sd×d =
∑n

i=1(X i − X̄)(X i − X̄)′

I Verify Calculations: Can do this analytically (harder) or computationally
(easier):

I For differentiable loglikelihood `(θ |X) with θ = (θ1, . . . , θp), each component of
MLE is the maximum of a 1-d function:

θ̂ = arg max
θ

`(θ |X) =⇒ θ̂i = arg max
θi

`(θi , θ̂[−i] |X),

where θ̂[−i] = θ̂ \ {θ̂i}.

I Converse is false (as θ̂ could be a saddlepoint). However, loglikelihoods are generally
well-behaved, so if θ̂i = arg maxθi `(θi , θ̂[−i] |X) for i = 1, . . . , p, then very likely
that θ̂ is the MLE.
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Applications
1. Confidence Intervals

I Model: Y1, . . . ,Yn
iid∼ f (y |θ), θ = (θ1, . . . , θd ).

I MLE: θ̂ = arg maxθ `(θ |Y ), `(θ |Y ) =
∑n

i=1 log f (Yi |θ).

I Asymptotic Theory: As n→∞, we have

θ̂ ≈ N
(
θ0,I−10

)
, where

I θ0 is the true parameter value

I I0 is the (expected) Fisher Information:

I0 = −E
[
∂2

∂θ2 `(θ0 |Y )
]

= −n
∫ [

∂2

∂θ2 log f (y | θ0)
]
· f (y | θ0) dy
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Applications
1. Confidence Intervals

I Model: Y1, . . . ,Yn
iid∼ f (y |θ)

I Asymptotic Theory: As n→∞, we have θ̂ ≈ N
(
θ0,I−10

)
, where

I θ0 is the true parameter value

I I0 = −E
[
∂2

∂θ2 `(θ0 |Y )
]
is the (expected) Fisher Information.

Typically I0 is impossible to calculate because (i) expectation is usually
intractable and (ii) true θ0 is unknown.

Observed Fisher Information is a consistent estimator: Î = − ∂2

∂θ2 `(θ̂ |Y ) n→ I0

I Asymptotic Confidence Intervals: 95% CI for each element of θ:

θ̂i ± 1.96 · se(θ̂i ), se(θ̂i ) =
√

[Î−1]ii .

Such CI’s are often valid even without iid data.
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Applications
2. Linear Regression

I Model: y ∼ N (Xβ, σ2V ), where

I y = (y1, . . . , yn) is multivariate normal (random)

I Xn×p and V n×n are known (nonrandom)

I β = (β1, . . . , βp) and σ are unknown (parameters)

I Loglikelihood:

`(β, σ | y) = −1
2

{
(y − Xβ)′[σ2V ]−1(y − Xβ) + log |σ2V |

}
= −1

2

{
(β − β̂)′X ′V−1X(β − β̂) + nσ̂2

σ2
+ n log σ2

}
,

where β̂ = (X ′V−1X)−1X ′V−1y and σ̂2 = 1
n (y − Xβ̂)′V−1(y − Xβ̂).

I Inference: The MLE of θ = (β, σ) is θ̂ = (β̂, σ̂).
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