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The Multivariate Normal Distribution

» Definition: X = (Xi,...,Xy) is multivariate normal if and only if it a linear
combination of iid normals:

X=CZ+up, Z=(Z4,....29), Z S N(O0,1).

» Mean and Variance:

> EX]=CE[Z|+p=p

» var(X) = Cvar(Z)C' = CC' := X (many different C give the same variance)
> Notation: X ~ N (p, X)
> PDF:

Fx) = (2m) ™2 exp{ = 3(x — )=~ (x — 1) - } log| =}
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Simulation
> To generate X ~ N(p, X):

1. Find C such that CC’ = X.
2. Generate Z = (Zy,...,Z4) with Z; ~ N(0,1).
3. Set X=CZ+ p.

» To find C:

» Note that X is (i) symmetric and (ii) positive definite: for any vector a we have
a’¥a > 0, with equality <= a=0.

» Every symmetric positive-definite matrix has a Cholesky definition: ¥ = LL’,
where L is lower triangular and all diagonal elements L; > 0.
» Properties:

» The eigenvalues of triangular matrices are the diagonal elements
d 42
= = =]1. 4
> T 1x = (L)"1(L™1x). Solving linear systems with triangular matrices is O(d), as
opposed to O(d?) for general matrices.
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Conditional Distribution

4

» Marginal Distribution: X; ~ N (g, X1)

» Block Notation:
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» Conditional Distribution:

Xy | X1 ~ N (p3, T3), W= o+ En T (X1 — )
T =Xy - EnX ' Zon.

» Verify Calculations: f(xq, x2) = f(x1) X f(x2|x1) for any pair (x1, x2).

Can do this analytically (harder) or computationally (easier)
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Parameter Inference

> Data: X = (X1,....X,),  X; S N(w,X).
» Loglikelihood function:
Up, X | X) = IogH f(Xi|p, X) — {terms not involving p or X}
i=1
1 n _
=~ {nlog | E| + X0, (X — wy =71 (X; — )}

= —%{nlog x| + tr():fls) +n(X — N)/zil(x - N)},

where X=13" X Saxd = Y (Xi = X)(X; — X

“n

» MLE: =X and ¥ = §/n.
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Parameter Inference

> Data: X = (X1,....X,),  Xi SN (w,X).

» Loglikelihood function:

1 _ _
(2| X) = —5 { nlog || + tr(E718) + n(X — w) E7(X — )},
where X=13" X, Saxd =S (Xi — X)(X; — X)'
> ’Verify Calculations: ‘ Can do this analytically (harder) or computationally
(easier):

» Check that
L, X| X) =log fF(X |, X) + CONST

for fixed X and varying (u, X)
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Parameter Inference
> Data: X = (X1,...,X,),  X; S N(w,X).
» MLE: 1= X and £ = S/n,
where X=1" X, Saxd =S (Xi — X)(X; — X)'

“n

» | Verify Calculations: ‘ Can do this analytically (harder) or computationally

(easier):
» For differentiable loglikelihood £(6 | X) with @ = (64, ...,6,), each component of
MLE is the maximum of a 1-d function:
6 = argmax (0| X) = 0, = arg maxé(@,—,é[,,»] | X),
2] 0;
where é[_,-] = é \ {é,}
» Converse is false (as & could be a saddlepoint). However, loglikelihoods are generally
well-behaved, so if §; = arg max,. £(6;, 9[,,-] | X) for i =1,...,p, then very likely
that 8 is the MLE.

STAT 440/840 — CM 761: Computational Inference The Multivariate Normal 7/10



Applications
1. Confidence Intervals

> Model: Yi,...,Y, X f(y|0), 0=(61,...,04).
> MLE: 6 = argmaxo £(8]Y),  £(0]Y) =37 logf(Y:|6).
> Asymptotic Theory: As n — co, we have
0~ N(OO,Igl), where
> 6, is the true parameter value
> T, is the (expected) Fisher Information:
2

Io=-E [;azé(eu Y)] = —n/ [6802 logf(ylé’o)] - f(y|60)dy
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Applications
1. Confidence Intervals

» Model: Yi,...,Y, " f(y6)

> Asymptotic Theory: As n — oo, we have 0 ~ N(Bo,Io_l), where
» 6y is the true parameter value
> Ty =— {892 (6o | Y)} is the (expected) Fisher Information.

Typically Zo is impossible to calculate because (i) expectation is usually

intractable and (ii) true 8o is unknown.

Observed Fisher Information is a consistent estimator: Z = 892 001Y)S I,
> Asymptotic Confidence Intervals: 95% Cl for each element of 6:

0; +1.96 - se(d)), se(f)=\[Z ]

Such Cl's are often valid even without iid data.
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Applications

2. Linear Regression
> Model: y ~N(XB,0%V), where

» y=(y1,...,¥n) is multivariate normal (random)

» X,xp and V,x, are known (nonrandom)

» B =(B1,...,Bp) and o are unknown (parameters)

» Loglikelihood:

(8.0 1y) =3 {y = XBY VI (v ~ XB) + log 07V}
_ 1 {(B—B)'x'le(ﬂ—3)+na2 +n|oga2},

2 02
where B8 = (X'V7IX)"1X'V 1y and 62 = 1(y — XB)' V~}(y — XB).

1
> Inference: The MLE of 8 = (8,0) is 8 = (,8).
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